Propuesto por Miguel-Ángel Pérez García-Ortega, profesor de Matemáticas en el IES "Bartolomé-José Gallardo" de Campanario (Badajoz)
Problema 1006

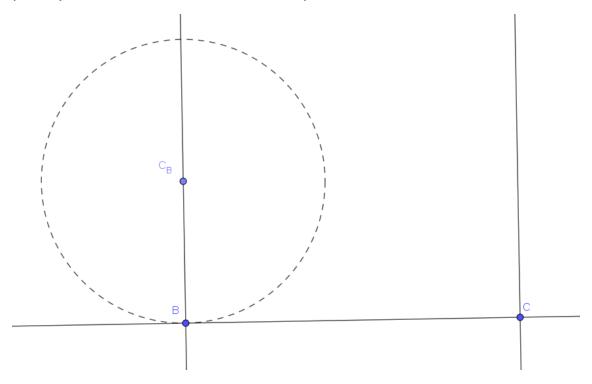
Para un triángulo ABC, se consideran los centros de las circunferencias Q_b y Q_c que pasan por el punto A y son tangentes a la recta BC en los puntos B y C, respectivamente.

Determinar el lugargeométrico que debe describir el punto A para que: Q_b Q_c sea paralela a AB o Q_b Q_c sea paralela a AC

Pérez, M. A. (2021): Comunicación personal.

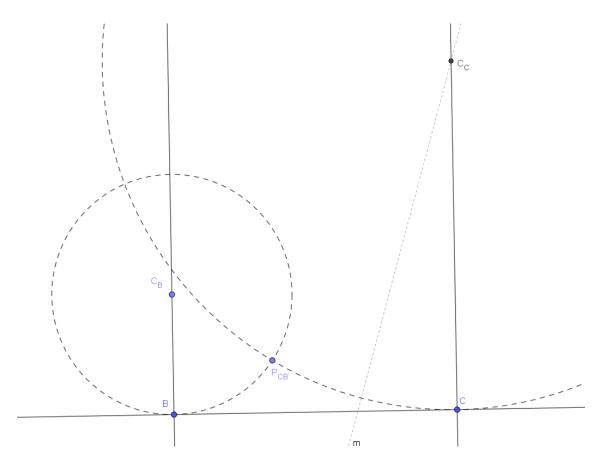
Solución (2) (No analítica) Antonio Casas Pérez, profesor jubilado del Departamento de Matemática Aplicada al Urbanismo, a la Edificación y al Medio Ambiente, Universidad Politécnica de Madrid

Elegimos un punto arbitrario C_B en la perpendicular a la recta CB pasando por B y la circunferencia de centro C_B que contiene a B.



Los puntos de esta circunferencia que son el tercer vértice A de forma que el triángulo ABC verifique la condición dada en el enunciado, se calculan de la forma siguiente:

Tomamos un punto P_{CB} de la circunferencia, trazamos la recta BP_{CB} y la mediatriz m del segmento CP_{CB} el punto C_C de la figura que sigue, será el centro de la circunferencia tangente a BC en C y pasa por P_{BC}



El punto P_{BC} será un vértice A de los triángulos buscados, cuando las rectas r1 y r2 sean paralelas, lo que únicamente ocurre cuando $BC_B = C_CQ_C$ y los triángulos $BP_{CB}M_{CB}$, BCQ_C son semejantes. Así $BP_{CB}M_{CB}$ es ángulo recto y P_{CB} se mueve en la circunferencia de centro M4

