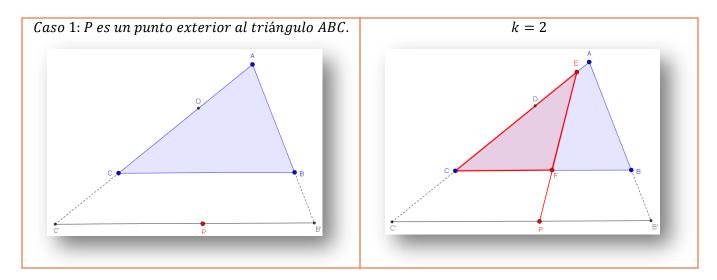
Problema 948.-

Dado un triángulo ABC y un punto cualquiera del plano P, dividir ABC con una recta que pase por P y de forma que el cociente de áreas de las partes obtenidas sea un número positivo dado.

Propuesto por Antonio Casas Pérez, (2020).

Solución de Florentino Damián Aranda Ballesteros. Córdoba.



Siendo P, punto exterior al $\triangle ABC$, trazamos una paralela por P a uno de los lados. Sea en este caso, B'C'. Determinamos sobre el lado CA el punto D de modo que se verifique $C'P \cdot CD = \frac{1}{h} \cdot CB \cdot CA$. Sea ahora el punto E sobre el lado AC de modo que el segmento EP determine el $\overset{\circ}{\Delta}CEF$ de modo que $[\Delta CEF] = \frac{1}{\nu} \cdot [\Delta ABC].$

Para que esto suceda debe verificarse que $\frac{[\Delta CEF]}{[\Delta ABC]} = \frac{CF \cdot CE}{CB \cdot CA} = \frac{1}{k}$

Ahora bien,
$$CF \cdot CE = \frac{C'P \cdot CE}{C'E} \cdot CE = \frac{C'P}{C'E} \cdot (CD + DE) \cdot (C'E - C'C) = \frac{C'P}{C'E} \cdot (CD \cdot C'E - CD \cdot C'C + DE \cdot C'E - DE \cdot C'C)$$
 Como deseamos que $CF \cdot CE = C'P \cdot CD$, entonces $CD \cdot C'E - CD \cdot C'C + DE \cdot C'E - DE \cdot C'C = CD \cdot C'E$ Si imponemos que $CD \cdot C'C = CE \cdot DE \rightarrow C'C = CD \cdot C'C + DE \cdot C'C + DE \cdot C'C = CD \cdot C'C + DE \cdot C'C +$

$$CD \cdot C^{'}E - CD \cdot C^{'}C + DE \cdot C^{'}E - DE \cdot C^{'}E - CE \cdot DE + DE \cdot C^{'}E - DE \cdot C^{'}E - DE \cdot C^{'}E + DE \cdot (C^{'}E - CE - C^{'}C) = CD \cdot C^{'}E.$$

Por tanto,

$$\frac{[\Delta CEF]}{[\Delta ABC]} = \frac{CF \cdot CE}{CB \cdot CA} = \frac{C'P \cdot CD}{CB \cdot CA} = \frac{1}{k}.$$

En definitiva, hemos de hallar los puntos auxiliares D y E para construir nuestra solución.

(1) Construcción del punto D.

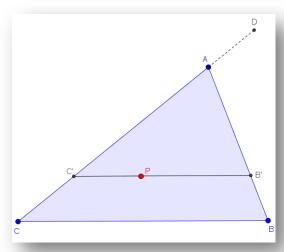
$$C'P \cdot CD = \frac{1}{k} \cdot CB \cdot CA \rightarrow CD \text{ es la cuarta proporcional en} \qquad \frac{CD}{CB} = \frac{CA}{k \cdot C'P}$$

(2) Construcción del punto E.

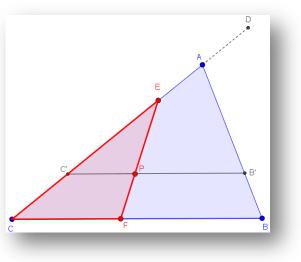
$$CD \cdot C'C = CE \cdot DE \rightarrow Si \ llamamos \ x = DE, entonces:$$
 $CD \cdot C'C = (CD + DE) \cdot DE; \ CD \cdot C'C = (CD + x) \cdot x \rightarrow x^2 + CD \cdot x - CD \cdot CC' = 0$

$$DE = x = \frac{-CD + \sqrt{CD^2 + 4 \cdot CD \cdot CC'}}{2}$$

Caso 2: P es un punto interior al triángulo ABC.



k = 3



Siendo P, punto interior al $\triangle ABC$, trazamos una paralela por P a uno de los lados. Sea en este caso, B'C'. Determinamos sobre el lado CA el punto D de modo que se verifique $C'P \cdot CD = \frac{1}{k} \cdot CB \cdot CA$. Sea ahora el punto E sobre el lado AC de modo que el segmento EP determine el $\triangle CEF$ de modo que $[\triangle CEF] = \frac{1}{k} \cdot [\triangle ABC]$.

Para que esto suceda debe verificarse que $\frac{[\Delta CEF]}{[\Delta ABC]} = \frac{CF \cdot CE}{CB \cdot CA} = \frac{1}{k}$

Ahora bien,

$$CF \cdot CE = \frac{C'P \cdot CE}{C'E} \cdot CE = \frac{C'P}{C'E} \cdot (CD - ED) \cdot (CC' + C'E) = \frac{C'P}{C'E} \cdot (CD \cdot CC' - ED \cdot CC' + CD \cdot C'E - ED \cdot C'E)$$
Como deseamos que $CF \cdot CE = C'P \cdot CD$, entonces $(CD \cdot CC' - ED \cdot CC' + CD \cdot C'E - ED \cdot C'E) = CD \cdot C'E$
Si imponemos que $CD \cdot C'C = CE \cdot ED \rightarrow C'C'$

$$CD \cdot CC' - ED \cdot CC' + CD \cdot C'E - DE \cdot C'E = CE \cdot ED - ED \cdot CC' + CD \cdot C'E - ED \cdot C'E = ED \cdot (CE - CC' - C'E) + CD \cdot C'E = CD \cdot C'E.$$

Por tanto,

$$\frac{[\Delta CEF]}{[\Delta ABC]} = \frac{CF \cdot CE}{CB \cdot CA} = \frac{C^{'}P \cdot CD}{CB \cdot CA} = \frac{1}{k}.$$

En definitiva, hemos de hallar los puntos auxiliares D y E para construir nuestra solución.

(1) Construcción del punto D.

$$C'P \cdot CD = \frac{1}{k} \cdot CB \cdot CA \rightarrow CD \text{ es la cuarta proporcional en}$$

$$\frac{CD}{CB} = \frac{CA}{k \cdot C'P}$$

(2) Construcción del punto E.

$$CD \cdot C'C = CE \cdot ED \rightarrow Si \ llamamos \ x = CE, entonces:$$
 $CD \cdot C'C = CE \cdot (CD - CE); \ CD \cdot C'C = x \cdot (CD - x) \rightarrow x^2 - CD \cdot x + CD \cdot C'C = 0$
 $CE = x = \frac{CD + \sqrt{CD^2 - 4 \cdot CD \cdot C'C}}{2}$