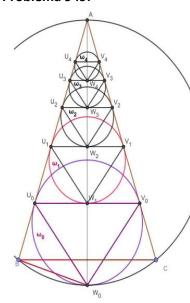
Problema 949.-



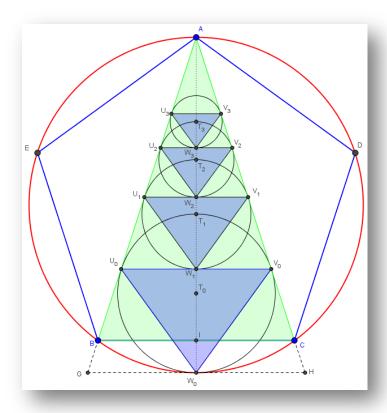
- Given golden triangle $\bigwedge ABC$ being BC=1
- Let $\omega_0 = \odot(T_0, T_0U_0)$ be the A- mixtillinear incircle of $\triangle ABC$
- \bullet Let U_0, V_0 be touch points of ω_0 wrt the sides AB and AC
- $W_0 = \omega_0 \cap \odot(A,B,C)$
- •Let $\omega_1 = \odot(T_1, T_1U_1)$ be the incircle of $\bigwedge AU_0V_0$
- \bullet Let U_1, V_1 be touch points of ω_1 wrt the sides AB and AC
- $\bullet \ W_1 {=} \omega_1 {\cap} U_0 V_0$

.....

- •Let $\omega_n = \odot(T_n, T_nU_n)$ be the incircle of $\bigwedge AU_{n-1}V_{n-1}$
- \bullet Let U_n, V_n be touch points of ω_n wrt the sides AB and AC
- $W_n = \omega_n \cap U_{n-1}V_{n,1}$
- Calculate $S_{\triangle U_n V_n W_n}$
- ullet Calculate $\sum_{j=0}^{\infty} S_{igwedge} V_{ij} V_{ij} W_{ij}$

Propuesto por Juan José Isach Mayo, Profesor de Matemáticas (Jubilado). Valencia (2020).

Solución de Florentino Damián Aranda Ballesteros. Córdoba.



En el triángulo áureo ΔABC , tenemos que BC=1; $AB=AC=\frac{1+\sqrt{5}}{2}$

El Radio R de la circunferencia circunscrita al

$$\triangle ABC$$
, es $R = \sqrt{\frac{5+\sqrt{5}}{10}}$

Vamos ahora a determinar el valor del radio r_0 de la circunferencia de centro T_0 inscrita en el triángulo mixtilíneo de lados AB y AC y de arco BW_0C .

Alser
$$\triangle AIB \sim \triangle AU_0T_0 \rightarrow \frac{AB}{AT_0} = \frac{BI}{U_0T_0}$$
.

Por tanto,
$$\frac{AB}{2R-r_0} = \frac{\frac{1}{2}}{r_0} \to r_0 = \frac{2R}{1+2AB}$$
.

En definitiva,
$$r_0 = \sqrt{10 - \frac{22}{5}\sqrt{5}}$$

Calculamos el área del $\Delta U_0 V_0 W_0$.

Para ello, observamos que $\frac{1}{2}l = U_0W_1 = U_0B \ \ y \ \ W_1W_0 = BW_0 = l_{10} = \sqrt{\frac{5-\sqrt{5}}{10}}.$

Así,
$$l = 2 \cdot l_{10} \cdot \tan 36^\circ = \sqrt{14 - 6\sqrt{5}}; \quad S[\Delta U_0 V_0 W_0] = \frac{1}{2} \ l \cdot l_{10} = l^2_{10} \cdot \tan 36^\circ = \sqrt{\frac{25 - 11\sqrt{5}}{10}}$$

Determinaremos ahora el radio r_1 del círculo inscrito al $\Delta A U_0 V_0$. Para ello usaremos la relación $S[\Delta A U_0 V_0] = s \cdot r_1$, siendo s el semiperímetro del $\Delta A U_0 V_0$.

$$S[\Delta A U_0 V_0] = \frac{1}{2}l(2R - l_{10}) = \sqrt{\frac{40 - 16\sqrt{5}}{10}} - \sqrt{\frac{25 - 11\sqrt{5}}{10}}$$
$$r_1 = \frac{S[\Delta A U_0 V_0]}{S} = \frac{2\sqrt{25 - 11\sqrt{5}} - \sqrt{65 - 29\sqrt{5}}}{\sqrt{10}}$$

Así la razón de semejanza entre las áreas de los triángulos $\Delta U_1 V_1 W_1 \ y \ \Delta U_0 V_0 W_0$ será k^2 , siendo $k = \frac{r_1}{r_0}$ la razón entre los respectivos radios de los círculos que los circunscribe.

$$k = \frac{r_1}{r_0} = \frac{\sqrt{30 - 10\sqrt{5}}}{4} \rightarrow k^2 = \frac{15 - 5\sqrt{5}}{8}$$

De este modo, podemos calcular el valor del área de cualquier triángulo $\Delta U_n V_n W_n$.

$$\begin{split} & \Delta U_0 V_0 W_0 = \sqrt{\frac{25-11\sqrt{5}}{10}} = \Delta_0 \\ & \Delta U_1 V_1 W_1 = k^2 \Delta_0 = \frac{15-5\sqrt{5}}{8} \sqrt{\frac{25-11\sqrt{5}}{10}} \\ & \Delta U_2 V_2 W_2 = k^4 \Delta_0 = \left(\frac{15-5\sqrt{5}}{8}\right)^2 \cdot \sqrt{\frac{25-11\sqrt{5}}{10}} \\ & \dots \\ & \Delta U_n V_n W_n = k^{2n} \Delta_0 = \left(\frac{15-5\sqrt{5}}{8}\right)^n \cdot \sqrt{\frac{25-11\sqrt{5}}{10}} \\ & \dots \end{split}$$

Finalmente,

$$S = \sum_{j=0}^{\infty} \Delta U_j V_j W_j = \Delta_0 + k^2 \Delta_0 + k^4 \Delta_0 + \cdots$$

$$S = \sum_{j=0}^{\infty} \Delta U_j V_j W_j = \Delta_0 \frac{1}{1 - k^2} = \sqrt{\frac{25 - 11\sqrt{5}}{10}} \cdot \frac{1}{1 - \frac{15 - 5\sqrt{5}}{8}} = \frac{4}{19} \sqrt{\frac{125 - 41\sqrt{5}}{10}}$$

$$S = \sum_{j=0}^{\infty} \Delta U_j V_j W_j = \frac{4}{19} \sqrt{\frac{125 - 41\sqrt{5}}{10}} \approx 0.38429682043173874 \dots u^2$$