TRIÁNGULOS CABRI

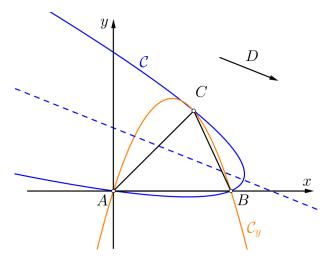
ANTONIO ROBERTO MARTÍNEZ FERNÁNDEZ

Problema 955. En el plano afín, dados un triángulo ABC y una dirección D, probar que existe una única cónica de tipo parabólico que circunscribe a dicho triángulo y es tal que sus diámetros son paralelos a la dirección dada.

Miguel-Ángel Pérez García-Ortega (IES Bartolomé-José Gallardo, Campanario, Badajoz)

SOLUCIÓN: Consideremos el plano afín $\mathbb{A}^2(\mathbb{R})$ inmerso en el plano proyectivo $\mathbb{P}^2(\mathbb{R})$ vía $(x,y) \leadsto [x,y,1]$. El enunciado es equivalente a probar que, dado un punto del infinito $D \in L_{\infty}$, existe una única cónica proyectiva $\overline{\mathcal{C}}$ de tipo parabólico que pasa por los puntos A,B,C,D.

Consideremos un referencial cartesiano \mathcal{R} de manera que las coordenadas de los vértices del triángulo sean $A=(0,0),\ B=(k,0)$ y C=(l,m), con $m\neq 0$. Pongamos la ecuación general de $\overline{\mathcal{C}}$ como $ax^2+2bxy+cy^2+2exz+2fyz+dz^2=0$. Si $\overline{\mathcal{C}}$ ha de ser de tipo parabólico, se tiene que cumplir $ac-b^2=0$.



Supongamos que $c \neq 0$, de modo que $a = \frac{b^2}{c}$. Imponiendo que \overline{C} tiene que pasar por A, B, C, se obtiene que d = 0, $e = -\frac{b^2k}{2c}$ y $f = \frac{b^2l(k-l)-2bclm-c^2m^2}{2cm}$. Supongamos que D = [1, r, 0]. De la condición $D \in \overline{C}$ obtenemos también que b = -cr. Sustituyendo en la ecuación de \overline{C} , operando y simplificando tenemos que hay una única cónica C de tipo parabólico que circunscribe a

Date: 1 de noviembre de 2020.

ABC y cuyo eje es paralelo a la dirección de D. Su ecuación se obtiene haciendo $z=1,\,\mathrm{y}$ es:

$$C: mr^2x^2 - 2mrxy + my^2 - mkr^2x + (klr^2 - l^2r^2 + 2lmr - m^2)y = 0$$

Observemos que, si $r \neq 0$, entonces $D = [1, r, 0] = \left[\frac{1}{r}, 1, 0\right]$. Dividiendo la ecuación de \mathcal{C} por r^2 y haciendo $r \to \infty$, tenemos la única cónica de tipo parabólico cuyo eje es paralelo al eje de ordenadas (punto del infinito [0, 1, 0]):

$$C_y: mx^2 - mkx + l(k-l)y = 0.$$

El caso c = 0 se corresponde con la cónica C_y .

Antonio Roberto Martínez Fernández IES Ruiz de Alda, San Javier