Pr. Cabri 969

Enunciado

Dado un segmento AB, se considera una recta I que pasa por el punto A y forma un ángulo β

con la recta AB. Si tomamos un punto P (distinto de A) sobre dicha recta y un punto Q tal que el punto B

es el punto medio del segmento PQ, probar que el lugar geométrico que describe el ortocentro del triángulo

APQ cuando el punto P recorre la recta l es una parábola. ¿ Para qué valores del ángulo β dicha parábola es

tangente a la recta AB ?.

Propuesto por Miguel-Ángel Pérez García-Ortega.

Solución

de César Beade Franco

Tomemos A(0,0) y B(1,0) fijos. P(p,mp) está situado sobre la recta r:y =mx, es decir, $\angle a = \angle BAP$ tiene tangente m. Q es el simétrico de P respecto a B y tiene coordenadas Q(2-p,-mp), es decir está situado sobre la recta s:y=mx+2m, paralela a la anterior.

Una generalización de parte del pr. 966.

Aquí H(-c (-2+c+c
$$m^2$$
), $\frac{(-1+c)(-2+c+cm^2)}{m}$)

Eliminando c obtenemos sus ecuaciones implícitas,

$$O(x,y)$$
: $x^2 - m y (2 - m y) + x (-1 + m^2 + 2 m y) = 0$.

Si calculamos sus invariantes, resultan ser parábolas con directrices $y = \frac{-1-m^2}{4m} + m x$, paralelas a AP.

Intersecando estas parábolas con AB (y=0), se obtienen los puntos $(0, 0), (1-m^2, 0)$.

Coinciden cuando m=±1, es decir, si β =±45°. En estos casos las parábolas son tangentes en (0, 0) a AB.