<u>Problema 978.</u> (propuesto por Antonio Casas Pérez) Dados un triángulo ABC y un punto T situado en su plano, determinar una recta que pase por el punto T y divida al triángulo ABC en dos polígonos con igual perímetro. Determinar la región de puntos del plano para los que el problema no tiene solución.

Solución:

Considerando coordenadas baricéntricas con respecto al triángulo ABC, si una recta cualquiera que divide a dicho triángulo en dos polígonos con igual perímetro corta a los segmentos BC y CA en puntos M = (0: m: 1-m) (0 < m < 1) y N = (n: 0: 1-n) (0 < n < 1), respectivamente, si llamamos s al semiperímetro del triángulo ABC, entonces:

$$bn + am = s \Rightarrow n = \frac{s - an}{b} \Rightarrow N = (s - am : 0 : b + am - s)$$

por lo que:

$$MN = m(b + am - s)x + (1 - m)(s - am)y + m(am - s)z = 0$$

Una vez determinadas las ecuaciones de todas estas rectas, vamos a determinar su envolvente, para lo cual tenemos que eliminar el parámetro m del sistema formado por la ecuación anterior y su ecuación derivada con respecto a m:

$$\begin{cases} 0 = m(b + am - s)x + (1 - m)(s - am)y + m(am - s)z \\ 0 = (2am + b - s)x + (2am - 2 - s)y + (2am - s)z \end{cases} (0 < m < 1)$$

por lo que, despejando m en la segunda ecuación y sustituyendo en la primera, obtenemos la ecuación de una cónica:

$$-(a-b+c)^2x^2 - (a+b-c)^2y^2 - (a+b+c)^2z^2 + 2(a^2+6ab+b^2-c^2)xy - 2(a-b+c)(a+b+c)xz - 2(-a+b+c)(a+b+c) = 0$$

que es una parábola, ya que es no degenerada, pues

$$\begin{vmatrix} -(a-b+c)^2 & a^2+6ab+b^2-c^2 & -(a-b+c)(a+b+c) \\ a^2+6ab+b^2-c^2 & -(a+b-c)^2 & -(-a+b+c)(a+b+c) \\ -(a-b+c)(a+b+c) & -(-a+b+c)(a+b+c) & -(a+b+c)^2 \end{vmatrix} = 64a^2b^2(a+b+c)^2 \neq 0$$

y su discriminante es $\Delta = 0$, por lo que su único punto en la recta del infinito es su centro (conjugado de la recta del infinito) Z = (a:b:-a-b), que coincide con el punto del infinito de la bisectriz interior correspondiente al vértice C del triángulo ABC, cuya ecuación es:

$$bx - ay = 0$$

Además, como esta bisectriz corta a la parábola en el punto:

$$V = (a(a+b+c):b(a+b+c):-a^2+6ab-b^2-ac-bc)$$

de forma que la recta tangente a la parábola en este punto:

$$t_V = 0 = (a - 3b + c)x + (-3a + b + c)y + (a + b + c)z$$

Miguel-Ángel Pérez García-Ortega

tiene el mismo punto del infinito $t_V^{\infty} = (a:-b:b-a)$ que la bisectriz exterior correspondiente al vértice C del triángulo ABC, cuya ecuación es:

$$bx + ay = 0$$

lo cual significa que la recta t_V es perpendicular al eje de la parábola y, por tanto, el punto V es el vértice de ésta y la bisectriz interior correspondiente al vértice C es su eje, siendo, además:

$$\begin{cases} P = t_V \cap BC = (0: a+b+c: 3a-b-c) \\ Q = t_V \cap CA = (a+b+c: 0: -a+3b-c) \end{cases}$$

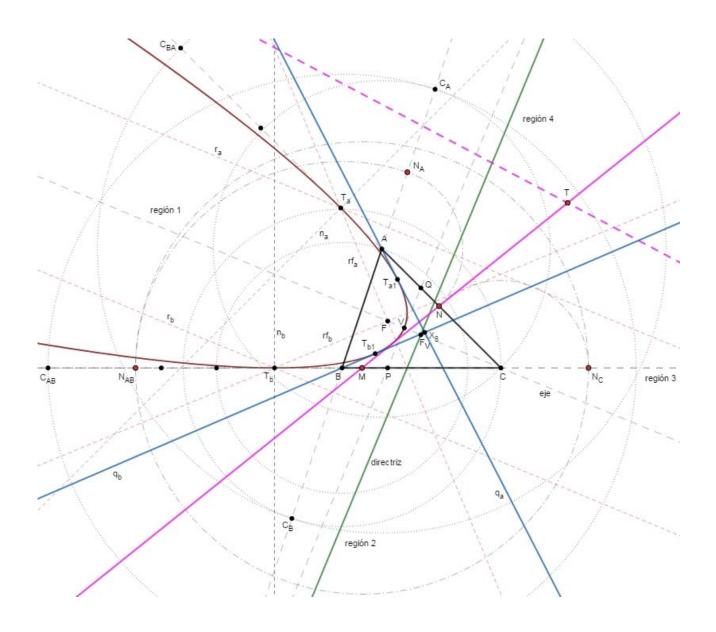
A continuación, como las rectas CA y BC cortan a la parábola en único punto:

$$\begin{cases} T_a = CA \cap \text{ parábola} = (a+b+c:0:-a+b-c) \\ T_b = BC \cap \text{ parábola} = (0:a+b+c:a-b-c) \end{cases}$$

entonces, ambas son tangentes a la parábola en dichos puntos y, si r_a el rayo paralelo al eje de la parábola que incide en ella en el punto T_a , la reflexión rf_a de r_a sobre la recta n_a normal a la parábola (perpendicular al lado CA) en el punto T_a corta al eje de la parábola en el foco de ésta, siendo el punto F_V el punto simétrico del punto F respecto del punto F y la directriz de la parábola la recta perpendicular a su eje pasando por el punto F_V . Por tanto, para construir esta parábola, haremos lo siguiente:

- ① Como $T_a = \left(\frac{a+b+c}{2b}: 0: \frac{-a+b-c}{2b}\right)$ es el punto exterior al triángulo ABC situado sobre la semirrecta CA a una distancia $\left(\frac{a+b+c}{2b}\right)b = \frac{a+b+c}{2}$ del punto C, para construirlo, con centro en el punto B, giramos el punto C hasta el punto C_B , situado sobre la semirrecta C_B a una distancia C_B 0 situado sobre la semirrecta C_B 1 a una distancia C_B 2 situado sobre la semirrecta C_B 3 una distancia C_B 4 el punto C_B 5 finalmente, el punto C_B 6 punto medio del segmento C_B 6, siendo el punto C_B 7 el punto medio del segmento C_B 7. De igual forma, podríamos construir los puntos C_B 7 y C_B 7.
- $\ \ \, \mathbb{Q}$ Podemos construir el vértice V de la parábola intersecando la recta PQ y la bisectriz interior correspondiente al vértice C del triángulo ABC.
- ③ Podemos construir el foco F y la directriz de la parábola según se ha descrito anteriormente. Por tanto, ya podemos construir la parábola.

Una vez construida la parábola, se trazan las rectas tangentes a ella (distintas de los lados del triángulo ABC) pasando por los puntos A y B, respectivamente, que dividen el plano en cuatro regiones: región 1 (la que contiene a la parábola), región 2, región 3 (la opuesta a la que contiene a la parábola) y región 4. De esta forma, para cualquier punto T situado en el mismo plano que el triángulo ABC, una de las dos rectas tangentes a la parábola trazadas desde este punto corta a los segmentos BC y CA cuando dicho punto está situado en las regiones 2 ó 4 y ninguna de las rectas tangentes a la parábola trazadas desde este punto corta a los segmentos BC y CA cuando dicho punto está situado en las regiones 1 ó 3, siendo, además, la recta tangente a la parábola trazada desde el punto T que interseca a los segmentos BC y CA una solución del problema.



Finalmente, como las ecuaciones de las rectas polares de los puntos A y B respecto de la parábola son:

$$\begin{cases} p_a \equiv 0 = (a-b+c)^2 x - (a^2 + 6ab + b^2 - c^2)y + (a-b+c)(a+b+c)z \\ p_b \equiv 0 = (a^2 + 6ab + b^2 - c^2)x - (-a+b+c)^2 y - (-a+b+c)(a+b+c)z \end{cases}$$

entonces, ambas rectas cortan a la parábola en los puntos:

$$\begin{cases}
T_a = (a+b+c:0:-a+b-c) \\
T_a^1 = (4ab:(a-b+c)^2:a^2-(b-c)^2) \\
T_b = (0:a+b+c:a-b-c) \\
T_b^1 = ((-a+b+c)^2:4ab:b^2-(a-c)^2)
\end{cases}$$

Miguel-Ángel Pérez García-Ortega

siendo las rectas tangentes a la parábola (distintas de los lados del triángulo ABC) trazadas desde los puntos A y B las rectas polares de los puntos T_a^1 y T_b^1 , respectivamente:

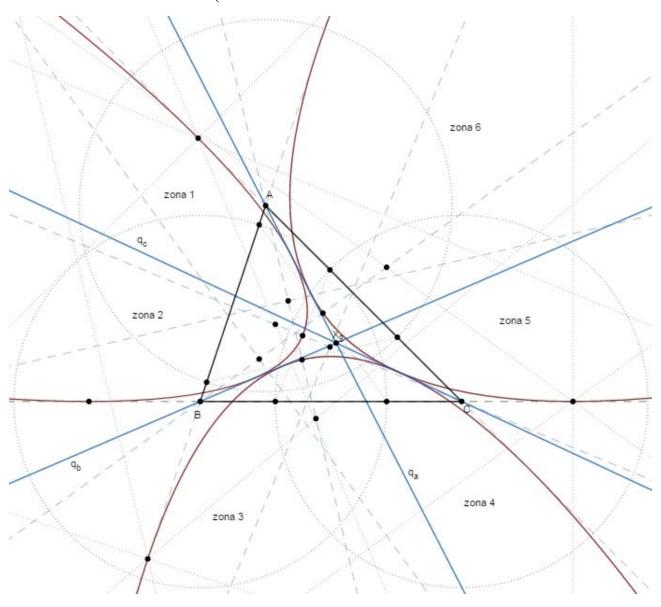
$$\begin{cases} q_a = 0 = (a+b-c)y - (a-b+c)z \\ q_b = 0 = (a+b-c)x - (-a+b+c)z \end{cases}$$

y su punto de intersección el punto de Nagel del triángulo ABC:

$$X_8 = (-a+b+c: a-b+c: a+b-c)$$

Una vez halladas todas las soluciones al problema que nos proporciona esta parábola, razonando de forma totalmente análoga para los vértices A y B a como lo hemos hecho con el vértice C, obtendríamos tres parábolas y tres rectas tangentes a ellas:

$$\begin{cases} q_a \equiv 0 = (a+b-c)y - (a-b+c)z \\ q_b \equiv 0 = (a+b-c)x - (-a+b+c)z \\ q_c \equiv 0 = (a-b+c)x - (-a+b+c)y \end{cases}$$



Miguel-Ángel Pérez García-Ortega

concurrentes en el punto X_8 , que dividen el plano en seis zonas (según se muestran en la figura anterior), de forma que la parábola opuesta al vértice A nos proporciona soluciones al problema para las zonas 2 y 5, la parábola opuesta al vértice B nos proporciona soluciones al problema para las zonas 1 y 4 y la parábola opuesta al vértice B nos proporciona soluciones al problema para las zonas 3 y 6. Por tanto, el problema tiene solución para cualquier punto del plano. Es más, si $T = X_8$, entonces, el problema admite tres soluciones distintas, una para cada una de las cevianas del punto X_8 .