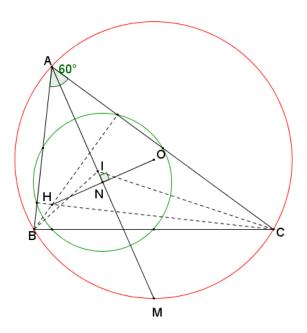
Problema 980

- 1) Dado un segmento BC, determinar el lugar geométrico que debe describir el punto A para que el vértice A, el incentro I y el centro N de la circunferencia de Euler del triángulo ABC estén alineados.
- 2) Dado un segmento BC, determinar el lugar geométrico que debe describir el punto A para que el vértice B, el incentro I y el centro N de la circunferencia de Euler del triángulo ABC estén alineados.

Pérez, M. A. (2021): Comunicación personal

Solution proposée par Philippe Fondanaiche

Q₁ Cette question est une variante du problème n°747 dont l'une des solutions est accessible à l'adresse https://personal.us.es/rbarroso/trianguloscabri/sol/sol747edi.pdf. On la trouve également dans l'annexe ciaprès.

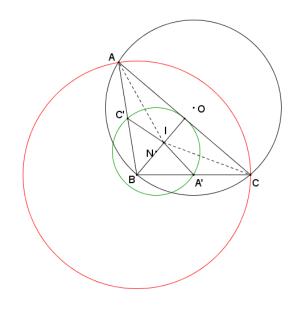


O et H étant respectivement le centre du cercle circonscrit au triangle ABC et H l'orthocentre,la bissectrice de l'angle en A du triangle ABC est la médiatrice de OH si et seulement si l'angle en A est égal à 60°.

Or le centre N du cercle des neuf points est le milieu de OH.

Il en résulte que le lieu de A tel que les points A,I et N sont alignés est le cercle est constitué par deux arcs de cercle situés de part et d'autre de la droite [BC] sous lesquels on voit le côté BC avec un angle de 60°

Q2 Avec un triangle isocèle ABC de sommet B,les points B,I et N sont trivialement alignés...



Réciproquement si B,N et I sont alignés, A' et C' étant les milieux de BC et AB, si IA' = IC' et si I est sur la bissectrice de l'angle en B alors les triangles BIA' et BIC' sont isométriques. D'où BA' = BC' et BA = BC. Le lieu de A est donc le cercle de centre B et de rayon BC.

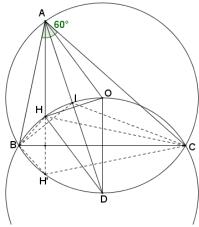
ANNEXE

Problema 747

Sea ABC un triángulo con AB<AC. Sean I el incentro, O el circuncentro y H el ortocentro. La recta AI es mediatriz de OH si y sólo si <A=60°.

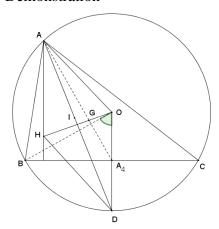
Solution proposée par Philippe Fondanaiche

Si l'angle \angle BAC = 60° , alors la droite AI est médiatrice de OH Démonstration:



La bissectrice de l'angle \angle BAC coupe le cercle circonscrit au triangle ABC au point D milieu de l'arc BC qui ne contient pas A, tel que OD est perpendiculaire à BC.Par ailleurs \angle BOC = $2\angle$ BAC = 120° = \angle BDC. Les triangles OBD et OCD sont équilatéraux. On a donc OA = OB = OC = OD = BD Soit H' le symétrique de l'orthocentre H par rapport au côté BC. On a \angle BHC = \angle BH'C = 180° – \angle BAC = 120° .Les quatre points B,H,O et C sont donc sur un même cercle de centre D. Donc HD = OD . Le quadrilatère AODH a deux côtés parallèles AH et OD et trois de ses côtés AO,OD et HD sont égaux entre eux. C'est donc un losange et AD est la médiatrice de OH.

Réciproquement, si la bissectrice AI est médiatrice de OH, alors \angle BAC = 60° Démonstration



Soit G le centre de gravité du triangle ABC. Ce point G est situé sur la droite d'Euler OH de sorte que GH = 2GO. Soit A_4 le milieu du côté BC. L'homothétie de centre G et de rapport -1/2 transforme le triangle AHG en le triangle A_4OG tel que $OA_4 = AH/2$. Par hypothèse AD est médiatrice de OH.

Donc AH = OA = OB = OD. Il en résulte que $OA_4 = OB/2$ et $\angle BOA_4 = a 60^\circ$.

D'où $\angle BAC = \angle BOC/2 = \angle BOA_4 = 60^{\circ}$