Pr. Cabri 994

Enunciado

Sea ABC un triángulo. Elegido un punto P de la recta BC, se construye la recta r que pasa por los puntos proyección ortogonal de P sobre las rectas AB y AC. Probar que dichas rectas envuelven una cónica. ¿Qué tipo de cónica es la curva envuelta?. Hallarla.

Propuesto por Antonio Casas Pérez.

Solución

de César Beade Franco

Consideremos el triángulo A(a,b), B(-1,0), C(1,0) y el punto P(p,0).

Sus proyecciones sobre AB y AC son $Q(\frac{b^2 + (-1+a)^2 p}{(-1+a)^2 + b^2}, \frac{(-1+a) b (-1+p)}{1-2 a + a^2 + b^2})$ y

R(
$$\frac{-b^2 + (1+a)^2 p}{1+2 a+a^2+b^2}$$
, $\frac{(1+a) b (1+p)}{1+2 a+a^2+b^2}$).

La ecuación de la recta QR es

$$-(-1+a^2)(a-p)(p-x)+b^2(-1+px+a(-p+x))+b^3y+b(1+a^2-2ap)y=0.$$

Eliminando el parámetro p obtenemos la ecuación del lugar buscado,

$$a^{6} - 2 a^{5} x - 4 a^{3} (-1 + b^{2}) x - 2 a (-1 + b^{2})^{2} x + x^{2} + b^{4} x^{2} + a^{2} (1 + b^{2}) (1 + b^{2} - 2 x^{2}) + 2 b^{2} (-2 + x^{2}) + a^{4} (-2 + 2 b^{2} + x^{2}) + 4 b y ((-1 + a^{2} - b^{2}) (-1 + a x) + a^{2} b y) = 0$$

Es una cónica cuyo invariante afín vale 0, es decir, una parábola de foco (a,0), la proyección de A sobre BC y tangente a los lados AB y AC.

