Pr. Cabri 1013

Enunciado

- a) Demostrar que la transformada isotómica de cualquier recta respecto a un triángulo ABC es una cónica.
- b) Estudiar el tipo de cónica si la recta es paralela al lado BC (o a otro cualquiera). Comprobar que en este caso los centros de estas cónicas están sobre la mediana ma.
- c) ¿Cuándo la cónica del apartado b) es una parábola?

Propuesto por César Beade Franco.

Solución

de César Beade Franco

a) Se trata de obtener la transformada isotómica de cualquier recta.

Como las transformaciones afines conservan las medianas, los puntos medios y la razón entre segmentos, conserva también el transformado isotómico. Precisando más, P^* es el transformado isotómico de un punto P y T es una afinidad, entonces $T(P^*)$ es el transformado isotómico de T(P).

Así pues nos basta con considerar un triángulo concreto, por ejemplo, de vértices A(0,1), B(0,0) y C(1,0).

Consideremos la recta y=mx+p que pasa por (0,p) con pendiente m.

Un punto genérico de esta recta es (t,mt+p) y su tranfomado isotómico (1) ($\frac{(p+m\,t)\,(-1+p+t+m\,t)}{(-1+t)\,t+(-1+t)\,(p+m\,t)+(p+m\,t)^2}$, $\frac{t\,(-1+p+t+m\,t)}{(-1+t)\,t+(-1+t)\,(p+m\,t)+(p+m\,t)^2}$). Si eliminamos t obtenemos la ecuación implícita del lugar buscado (-1+p) x^2+x (1-p-y+my+py) = y (m+p-my-py), ecuación de 2º grado en x,y, por lo que es una cónica.

b y c) En este caso m=0 y la cónica queda (-1+p) x^2+x (1-p-y+py) = y (p-py). Todas estas cónicas pasan por A, B, C, G y son tangentes a la recta paralela a BC por A. Su invariante afín es $\frac{1}{4}$ $(-1-2p+3p^2)$ que se anula si $p=\frac{-1}{3}$ (parábola del problema 1011) y p=1 (degenerada).

Si $-1 - 2p + 3p^2 < 0 \Rightarrow -\frac{1}{3} < p < 1$, la cónica es una hipérbola. En los demás casos, una elipse.

Calculamos los centros de la familia de cónicas anterior y obtenemos $(\frac{p}{1+3p}, \frac{1+p}{1+3p})$ y elminando p, y = -2x+1, ecuación de la mediana por A.

Notas

Respecto a este triángulo, el transformado isotómico de un punto cualquiera P(x,y) es $P*(\frac{y(-1+x+y)}{x^2+x(-1+y)+(-1+y)y}, \frac{x(-1+x+y)}{x^2+x(-1+y)+(-1+y)y})$.