Pr. Cabri 1014

Enunciado

- a) Caracterizar las curvas que son transformadas isotómicas de cualquier recta que pasa por el baricentro G de un triángulo ABC.
- b) Calcular el lugar geométrico de los centros de las curvas del apartado a)

Propuesto por César Beade Franco.

Solución

de César Beade Franco

a) Se trata de obtener la transformada isotómica de cualquier recta que pase por el

Como las transformaciones afines conservan las medianas, los puntos medios y la razón entre segmentos, conserva también el transformado isotómico. Precisando más, P* es el transformado isotómico de un punto P y T es una afinidad, entonces T(P*) es el transformado isotómico de T(P).

Así pues nos basta con considerar un triángulo concreto, por ejemplo, de vértices A(0,1), B(0,0) y C(1,0).

Su baricentro es $G(\frac{1}{3}, \frac{1}{3})$ y $r(t)=(\frac{1}{3}+t, \frac{1}{3}+mt)$ una recta genérica que pasa por G con pendiente m.

El transformado isotómico de r(t) es h(t)= $\left(\frac{(1+3\ m\ t)\ (-1+3\ (1+m)\ t)}{-3+9\ (1+m+m^2)\ t^2},\ \frac{(1+3\ t)\ (-1+3\ (1+m)\ t)}{-3+9\ (1+m+m^2)\ t^2}\right)$ de

donde, eliminando t, obtenemos su ecuación implícita

$$(2 + m) x^2 + x (-2 - m + 2 y - 2 m y) - y (-1 - 2 m + y + 2 m y) = 0.$$

Para estudiar el tipo de cónica calculamos su invariante afín. Su matriz asociada

es
$$\begin{pmatrix}
b^{2} (1+2m) & -b (1+a-m+2am) & -\frac{1}{2} b^{2} (1+2m) \\
-b (1+a-m+2am) & -2-m+a (2+a+2 (-1+a) m) & \frac{1}{2} b (2+a+m+2am) \\
-\frac{1}{2} b^{2} (1+2m) & \frac{1}{2} b (2+a+m+2am) & 0
\end{pmatrix}$$

y dicho invariante $-3 (1 + m + m^2) < 0$.

Concluímos que es una hipérbola que pasa por A, B, C y G y es tangente a dicha recta en G. Salvo que la recta sea una mediana, entonces se transfoma en si misma.

b) Calculamos los centros de estas cónicas y obtenemos $\left(\frac{(1+2\,\mathrm{m})^2}{6\,(1+\mathrm{m}+\mathrm{m}^2)},\,\,\frac{(2+\mathrm{m})^2}{6\,(1+\mathrm{m}+\mathrm{m}^2)}\right)$, ecuación paramétrica del lugar que describen.

Eliminando m, $(1-2y)^2 + 4x(-1+x+y) = 0$, ecuación implícita de in-elipse de Steiner del triángulo ABC.

Si consideramos las rectas GI y GK, obtenemos los lugares pedidos en los problemas 1009 y 1010, respectivamente.