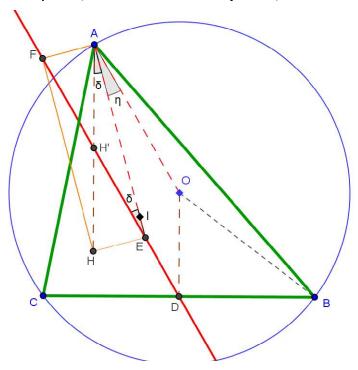
Edición del 16 al 31 de de enero de 2022

Problema 1034.- Sean O y H el circuncentro y el ortocentro de un triángulo ABC.


Sea D el punto medio de BC. Sea E el punto en la bisectriz de $\sphericalangle BAC$ tal que $AE \perp EH$

Sea F el punto tal que AEHF es un rectángulo. Probar que los puntos D, E y F están alineados.

Mathematical Excalibur, Vol. 22, No. 2, Nov. 18 – Jan. 19, pag.3

https://www.math.hkust.edu.hk/excalibur/v22 n2 20190124.pdf

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.

Sea H' el centro del rectángulo AEHF. Es el punto medio del segmento AH, una de sus diagonales.

 $AH = EF = 2R|\cos A|$ por el t. de los senos aplicado al triángulo AHC.

Y del triángulo rectángulo $\triangle ODB$ obtenemos $OD = AH' = R \cos A$.

La paralela por A a la diagonal EF del rectángulo y la altura AH forman ángulos iguales con la bisectriz AI. Por tanto son conjugadas isogonales: esa paralela es el radio OA de la circunferencia circunscrita al triángulo. Sea D' el punto de corte de la diagonal EF con el lado BC, es decir, $D' = EF \cap BC$.

Tenemos pues que el cuadrilátero AH'D'O es un paralelogramo con AH'=OD'=OD y los tres son perpendiculares a BC, por tanto D=D' y con esto se concluye la alineación de los puntos F,H',E y D como se quería demostrar.