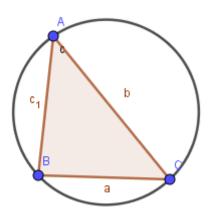
Propuesta de César Beade Franco, profesor de matemáticas jubilado de Cee (La Coruña)

Problema 1036

Dados 2 puntos, B y C sobre una circunferencia situar sobre la misma otro punto A tal qué el triángulo ABC tenga perímetro máximo.

Beade, C. (2022): Comunicación personal.

Solución del director

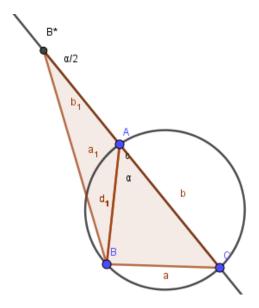


Sean B y C dados y A variable sobre una circunferencia Ω dada.

Sea $\angle BAC = \alpha$

Prolonguemos sobre la recta AC una longitud AB, y nos dará un punto B^* tal que el perímetro pedido es $BC(Constante) + CB^*$.

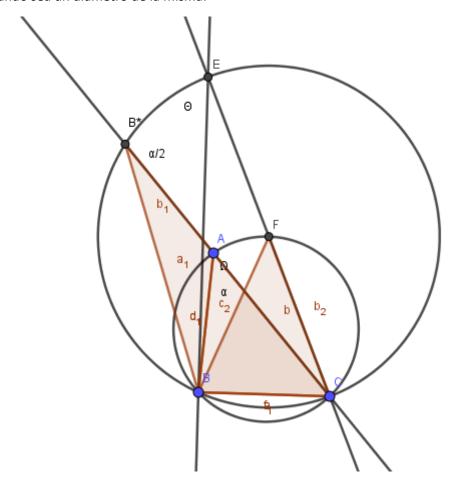
Dado que BAB* es isósceles en A, tenemos que $\angle BB^*C = \angle BB^*A = \frac{\alpha}{2}$



De manera que B* está situado en el arco capaz de $\alpha/2$ para el segmento BC.

Tal arco es de una circunferencia $\boldsymbol{\theta}$.

Por tanto el segmento CB* que une dos puntos de tal arco de circunferencia será máximo cuando sea un diámetro de la misma.



Al ser CE diámetro de la circunferencia θ , obtenemos que FB=FC=FE, radio.

Por tanto el triángulo buscado es isósceles.

Ricardo Barroso Campos. Profesor Jubilado. Sevilla.