Problema n° 1036

Dados 2 puntos, B y C sobre una circunferencia situar sobre la misma otro punto A tal qué el triángulo ABC tenga perímetro máximo.

Beade, C. (2022): Comunicación personal.

Solution proposée par Philippe Fondanaiche

Réponse : le périmètre est maximum quand le triangle ABC est isocèle de sommet A.

Les côtés du triangle ABC sont respectivement BC = a, CA = b et AB = c.

Soient
$$\angle BAC = \alpha$$
, $\angle CBA = \beta$ et $\angle ACB = \pi - \alpha - \beta$.

Il s'agit de trouver le maximum de a + b + c quand A parcourt le cercle (Γ) passant par les points B et C. On suppose que du point A on voit le segment sous un angle α constant modulo π fixé à l'avance.

Comme a est aussi fixé à l'avance, il s'agit de trouver le maximum de b + c.

Or la relation des sinus dans le triangle ABC donne : $a/\sin(\alpha) = b/\sin(\beta) = c/\sin(\alpha + \beta)$

On en déduit $b + c = a/\sin(\alpha)[\sin(\beta) + \sin(\alpha + \beta)] = f(\beta)$.

La dérivée f'(β) de f(β) s'annule pour $\cos(\beta) + \cos(\alpha + \beta) = 0$ soit $\beta = (\pi - \alpha)/2 \Rightarrow \gamma = (\pi - \alpha)/2 = \beta$

Le triangle ABC est alors isocèle de sommet A avec $a + b + c = a + 2a\cos(\alpha/2)$.

On obtient bien un maximum de $f(\beta)$ car lorsque A est confondu avec le point B ou le point C, on a $a + b + c = 2a < a + 2a\cos(\alpha/2)$.