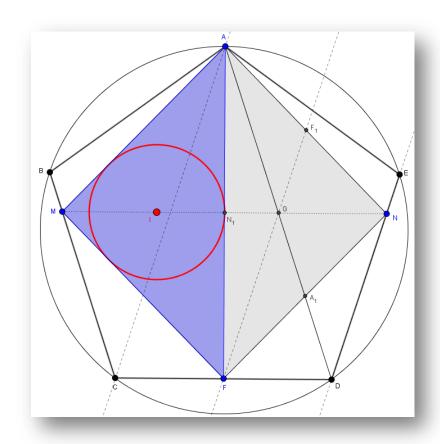
Problema 1038.-

A partir de un pentágono regular ABCDE de lado m, se construye un cuadrilátero NFMA de lados iguales, tomando el punto medio F de un lado DC y el vértice opuesto A. La mediatriz de FA corta en N a ED y en M a BC. Sea r el inradio del triángulo AMF. Calcular r en función de m.

Este problema está inspirado en un problema de Fletcher Mattox y ha sido publicado en el grupo Perú Geométrico.

Isach: J.J: (2022): Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, Córdoba (España).



Una vez construido el cuadrilátero NFMA, observamos los siguientes hechos de interés.

En el triángulo ΔANF (ΔAMF), la paralela media entre la diagonal AC y el lado DE corta al lado AN en su punto medio, F_1 . Por tanto esta paralela media es la mediana en F. Si trazamos ahora la mediana NN_1 , ambas cevianas se cortarán en el punto G, baricentro del ΔANF .

Ahora bien, este punto G es un vértice del paralelogramo FGND.

De este modo
$$GN = FD = \frac{m}{2}$$

Como G es baricentro, $GN_1 = \frac{1}{2}GN$.

En definitiva,
$$NN_1 = \frac{3}{4}m$$
.

Por fin,
$$MN = \frac{3}{2}m$$
.

Ya tenemos una diagonal del rombo NFMA.

Para calcular la otra diagonal AF, bastará aplicar Pitágoras en el triángulo rectángulo AFD.

$$AF = \frac{m}{2}\sqrt{4\phi + 3}$$
; siendo $\phi = \frac{1 + \sqrt{5}}{2}$.

De esta manera podemos hallar el área S del ΔANF

$$S = \frac{1}{2}[ANFM] = \frac{1}{2} \cdot \frac{MN \cdot AF}{2} = \frac{3m^2}{16} \sqrt{4\phi + 3}.$$

Ahora bien, como $S = p \cdot r \rightarrow r = \frac{S}{n}$, $p = \text{semiperimetro } del \Delta ANF$.

Como quiera que
$$AM^2 = \left(\frac{MN}{2}\right)^2 + \left(\frac{AF}{2}\right)^2 \rightarrow AM = \frac{m}{2}\sqrt{\phi + 3}$$
.

En definitiva,

$$r = \frac{S}{p} = \frac{1}{12}m \cdot \left(2\sqrt{19\phi + 13} - (4\phi + 3)\right) = \frac{1}{60}m \cdot \left(5 + 2\sqrt{5}\right)\left(\sqrt{250 - 90\sqrt{5}} - 5\right)$$