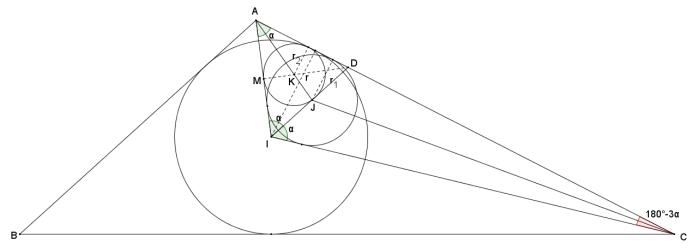
Problema n°1040

Propuesto por Marian Cucoanes, Romania, y Juan José Isah Mayo, Espana

Se considera un triángulo ABC tal que $3\angle BAC + \angle ACB = 2\pi$. Sean I y r el incentro y el inradio del triángulo ABC. Sean J y r_1 el incentro y el inradio del triángulo AIC. Sea D el punto de intersección de las rectas IJ y AC. Finalmente, sean K y r_2 el incentro y el inradio del triángulo AID. Probar que

$$\frac{1}{r_2} = \frac{1}{r} + \frac{1}{r_1}.$$

Solution proposée par Philippe Fondanaiche



Soit \angle BAC = 2α . D'où \angle ACB = $360^{\circ} - 6\alpha$. Comme AI est bissectrice de l'angle \angle BAC et que CI est bissectrice de l'angle \angle ACB, on a \angle CAI = α et \angle ACI = $180^{\circ} - 3\alpha$. D'où \angle AIC = 2α .

Comme IJ est bissectrice de l'angle \angle AIC, on a \angle AID = α et le triangle ADI est isocèle de sommet D avec DA = DI.

On pose sans perte de généralité DA = 1.

M étant le milieu de AI,il en résulte que AM= $cos(\alpha)$ et AI= $2cos(\alpha)$

Par ailleurs 2*aire du triangle ADI = $r^*DA = r_1^*(AD + AI) = r_2^*(AD + AI + DI)$.

On en déduit $r = r_1*(1 + 2\cos(\alpha)) = r_2*(2 + 2\cos(\alpha))$.

D'où $2\cos(\alpha) = r/r_1 - 1 = r/r_2 - 2$, soit $r/r_2 - r/r_1 = 1 \rightarrow 1/r_2 - 1/r_1 = 1/r$. C.q.f.d.