Quincena del 1 al 15 de de marzo de 2022.

Propuesto por Marian Cucoanes, Rumanía, y Juan José Isach Mayo, España.

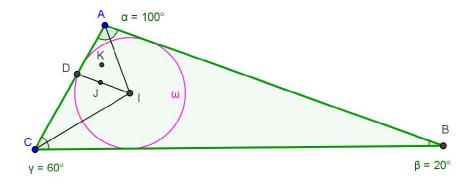
Problema 1040.- Se considera un triángulo ABC tal que $3 \not \in BAC + \not ACB = 2\pi$. Sean I y r el incentro y el inradio del triángulo ABC. Sean I y r_1 el incentro y el inradio del triángulo AIC. Sea I el punto de intersección de las rectas II y II0. Finalmente, sean II1 y II2 el incentro y el inradio del triángulo II3.

Probar que
$$\frac{1}{r_2} = \frac{1}{r} + \frac{1}{r_1}$$
.

Cucoanes, M. Isach, J.J. (2022): Comunicación personal.

Nota de los proponentes: este problema se ha publicado en el número 3 del volumen 24 de 2021 de la Gaceta Matemática de la RSME.

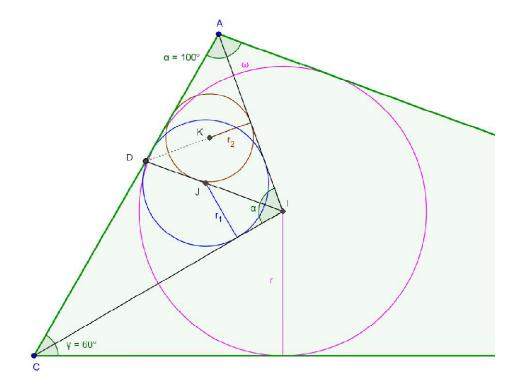
Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



De la condición sobre el ángulo α se deduce que $\gamma=360-3\alpha$; $\beta=2\alpha-180$ y para ser todos ángulos de un triángulo concluimos que $90<\alpha<120$.

Hemos tomado un valor para el ángulo en A, $\alpha=100^\circ$, aunque los razonamientos se hacen para cualquiera de sus posibles valores.

Vamos a ampliar la parte correspondiente al triángulo AIC, donde se va a desarrollar el razonamiento para demostrar la fórmula pedida.



En el triángulo AIC tenemos que el ángulo en I es $90 + \beta/2$, que es precisamente el valor del ángulo α , y como IJ es su bisectriz resulta que ΔAID es isósceles con AI como lado desigual.

En este último obtenemos $AI = 2AD \cdot \cos \alpha/2$.

Ahora aplicando el teorema de la bisectriz en ΔAIC tenemos: $AD = \frac{AC \cdot AI}{AI + CI} = \frac{2AC \cdot AD \cdot \cos \alpha/2}{AI + CI}$.

De donde $AI + CI = 2AC \cdot \cos \alpha/2$.

Para cualquier triángulo se puede poner base x altura = Perímetro x radio circ. Inscrita.

Aplicándolo al triángulo ΔAIC podremos escribir:

 $(2\cos\alpha/2+1)\cdot A\mathcal{C}\cdot r_1=A\mathcal{C}\cdot r$, de donde $(2\cos\alpha/2+1)\cdot r_1=r$. De aquí obtenemos la relación

$$\frac{1}{r} + \frac{1}{r_1} = \frac{2(\cos \alpha/2 + 1)}{r} \ (*)$$

Y ahora para $\triangle AID$: $2(\cos \alpha/2 + 1) \cdot AD \cdot r_2 = AD \cdot r$, o bien, $2(\cos \alpha/2 + 1) \cdot r_2 = r$.

Llevando esta expresión de r al segundo miembro de la fórmula (*) resulta finalmente la expresión buscada, esto es,

$$\frac{1}{r} + \frac{1}{r_1} = \frac{1}{r_2}$$