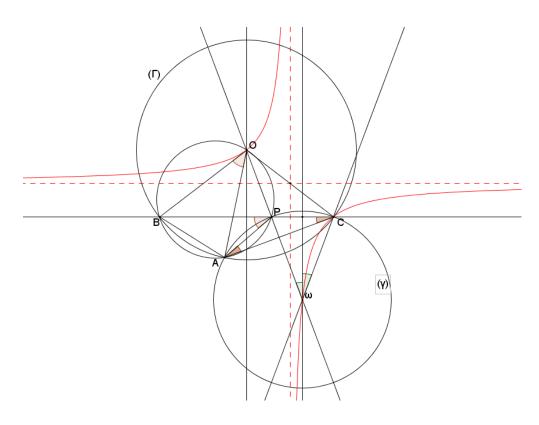
Problema n°1044

Sea BC una cuerda del circulo (Γ) de centro O.

Desde un punto P sobre la derecha [BC], trazamos el circulo circunscrito al triángulo BOP que corta (Γ) en un segundo punto A .

Determine el lugar geometrico del centro ω del círculo (γ) circunscrito al triángulo APC.

Solution proposée par Philippe Fondanaiche



Lemme : PA = PC

Dans le cercle (Γ) on a la relation d'angles \angle AOB = $2 \angle$ ACB et dans le cercle circonscrit au triangle BOP on a la deuxième relation d'angles \angle AOB = $2 \angle$ APB. Or \angle APB = \angle BCA + \angle CAP

Il en résulte que : \angle BCA = \angle ACP = \angle CAP.

Le triangle PAC est isocèle de sommet P.

Comme OA = OC, PA = PC, $\omega A = \omega C$, le point ω centre du cercle (γ) circonscrit au triangle PAC est sur la droite [OP].

Quand P décrit la droite [BC], le point ω décrit la courbe du seau d'eau⁽¹⁾ qui est l'hyperbole équilatère dont l'une des deux branches passe par O et l'autre par C et dont les asymptotes sont deux droites perpendiculaires qui se croisent au milieu de OC l'une d'elles étant parallèle à la droite [BC]

⁽¹⁾ Voir annexe, courbe décrite par R. Ferréol sur son site <u>mathcurve.com</u>

Annexe

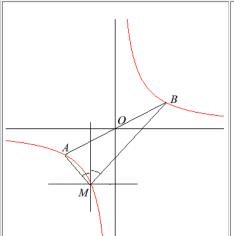
5) a) Définition angulaire (cas particulier de stelloïde) :

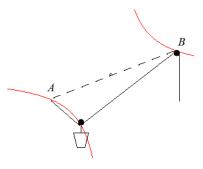
Étant donnés deux points distincts A et B, le lieu des points M tels que les bissectrices des droites (MA) et (MB) aient des directions constantes est l'hyperbole équilatère passant par A et B dont les asymptotes passent par le milieu de [AB] et sont parallèles à ces directions constantes.

Interprétation mécanique *: une corde est attachée à une extrémité à un point fixe A, passe par une poulie B et est maintenue à la main à l'autre extrémité. Un seau est suspendu à la corde par une poulie entre A et B.

Le seau décrit une portion d'hyperbole équilatère.

* Voir Roguet p 161 (1842)





La courbe du seau d'eau : comparer avec la <u>courbe du danseur de corde</u>.

b) Définition angulaire équivalente à la précédente.

Etant donné trois points distincts A,B,C le lieu des points M vérifiant (AC,AM) = (BM,BC) (1) (angles orientés de droites) est l'unique hyperbole équilatère de diamètre [AB] (i.e. centrée au milieu de (A,B)), éventuellement dégénérée, passant par C. Les asymptotes sont parallèles aux bissectrices de (AC) et (BC).

(1) s'écrivant aussi : (AB, AM) - (BM, AB) = (AB, AC) - (BC, AB), on peut donner une troisième définition angulaire :

étant donné deux points distincts A,B, et un réel θ le lieu des points M vérifiant mesure (AB, AM) – mesure $(BM, AB) = \theta \mod \pi$ est une hyperbole équilatère de diamètre [AB].

Par exemple, mesure (AB, AM) – mesure (BM, AB) = $\pi/2 \mod \pi$ est l'hyperbole équilatère de sommets A et B.

