Problema n°1049

Considere un triángulo isósceles ABC (AB = AC) cuyo ángulo en A es obtuso y el círculo (Γ) con centro A y radio AB

Sea el punto D sobre la recta [AB] tal que AD = BC con B ubicado entre A y D.

La recta [CD] interseca (Γ) en el punto E.

Sea el punto F sobre el segmento AB tal que AF = BE.

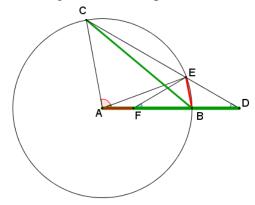
Demostrar que el triángulo DEF es isósceles de vértice E si y sólo si el ángulo $\alpha = \langle BAC toma un cierto valor \alpha 0$ que determinaremos.

Solution proposée par Philippe Fondanaiche

Réponse : le triangle DEF est isocèle de sommet E si et seulement si l'angle \angle BAC est égal à 100°.

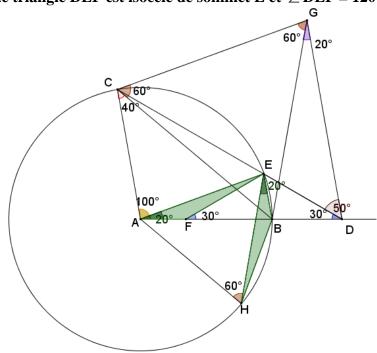
Démonstration

Le triangle ABC et les points D,E,F mis en situation générale se présentent comme suit :



Lemme

Avec l'angle \angle BAC = 100°, le triangle DEF est isocèle de sommet E et \angle DEF = 120°, \angle EDF = \angle EFD = 30°



On trace **le triangle équilatéral BCG** avec le sommet G de l'autre côté de A par rapport à la droite [BC]. Le triangle BAC étant isocèle, \angle ACB = $(180^{\circ} - 100^{\circ})/2 = 40^{\circ}$, il en résulte que \angle ACG = $40^{\circ} + 60^{\circ} = 100^{\circ} = \angle$ BAC.

Comme BC = AD = CG, le quadrilatère ADGC est un trapèze isocèle. Le côté DG est donc parallèle à AC et \angle ADG = \angle CGD = 80°. D'où \angle BGD = 80° - 60° = 20° et \angle DBG = 180° - 80° - 20° = 80°. Le triangle BGD est isocèle de sommet G et GB = GD = GC. Dès lors \angle CDG = (180° - 80°)/2 = 50° et \angle ADC = 80° - 50° = 30°, soit \angle EDF = 30°

On trace le triangle équilatéral AEH avec le sommet H de l'autre côté de C par rapport à la droite [AB]. Comme \angle ACD = 180° – 100° - 30° = 50° , \angle CAE = 180° – 2^*50° = 80° . D'où \angle BAE = 100° – 80° = 20° et \angle BAH = 60° – 20° = 40° qui est le double de l'angle \angle BEH qui est sous-tendu par l'arc BH dans le cercle de centre A et de rayon AB. Il en résulte que \angle BEH = \angle FAE = 20° .Par construction AF = BE et AF = EH, les deux triangles AEF et EHB sont isométriques. \angle BEH = \angle AEF = \angle BAE/2 = 10° et \angle BAE + \angle AEF = \angle BFE = 30° . Le triangle DEF est donc isocèle quand l'angle \angle BAC prend la valeur 100° .

Il ne reste plus qu'à démontrer que **cette valeur est unique** quand l'angle ∠BAC prend tout autre valeur comprise entre 90° (inclus) et 180° (exclu*)

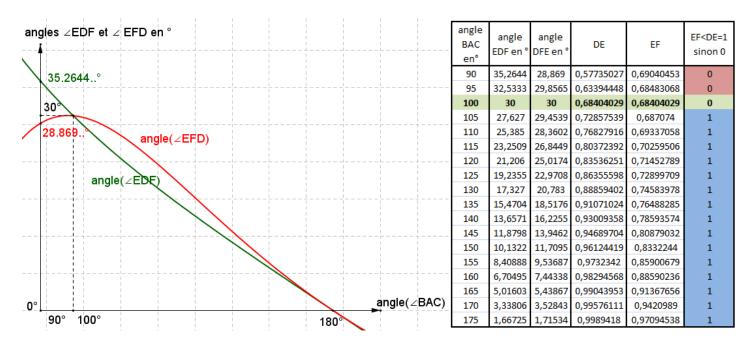
On prend par convention sans perte de généralité AB = AC = 1.

Lorsque le point C parcourt continûment le quart de cercle du quadrant nord-ouest du cercle de centre A et de rayon AB,l'angle $2\alpha = \angle$ BAC varie continûment de 90° à 180° - de même que les angles $\delta = \angle$ EDF et $\epsilon = \angle$ EFD qui sont reliés à l'angle α par les relations suivantes :

 $\delta = \angle EDF = arctangente(sin(2\alpha)/(2sin(\alpha) - cos(2\alpha))$

 $\varepsilon = \angle DEF = \operatorname{arctangente}(2\cos(\alpha+\delta)\sin(2\alpha+2\delta)/(1+2\cos(\alpha+\delta)\sin(2\alpha+2\delta))$

Les courbes représentatives de ces deux angles en fonction de α sont les suivantes : \angle **EDF** en vert et \angle **DEF** en rouge.:



L'angle ∠EDF décroit continûment de la valeur 35,2644..° à la valeur 0° + en passant par la valeur de 30° pour laquelle ∠BAC = 100° tandis que l'angle ∠DFE part de la valeur 28,869..° puis s'accroit jusqu'à la valeur 30° obtenue aussi avec BAC = 100° puis décroit jusqu'à la valeur 0°+ tout en restant toujours supérieur à l'angle ∠EDF.

Il en résulte que les côtés ED et EF du triangle DEF ne s'égalisent que lorsque les angles opposés sont égaux à savoir pour l'unique valeur de l'angle \angle BAC = 100°.

Le tableau ci-dessus qui donne les valeurs de DE et EF et dans lequel on fait varier l'angle \angle BAC par pas de 5° confirme ces résultats.

* Le triangle ABC est alors dégénéré en un segment de droite égal au diamètre du cercle de centre A et de rayon AB).