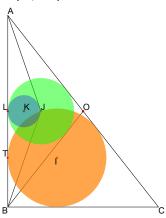
Pr. Cabri 1050

Enunciado

Dado un triángulo rectángulo ABC, O su circuncentro, I su incentro, J el incentro de ABO, K el incentro de ABJ.

Demostrar que $r(I) = r(J) + r(K) \Leftrightarrow ABC$ es un triángulo de Kepler.

Propuesto por Juan José Isach Mayo, España.



Solución

de César Beade Franco

En un triángulo de Kepler la proporción entre los lados es $1:\sqrt{\phi}:\phi$.

Consideremos el triángulo de vértices A(0,b), B(0,0) y C(1,0) cumpliendo las condiciones del problema.

Los radios son, respectivamente r(I) =
$$\frac{b}{1+b+\sqrt{1+b^2}}$$
, r(J) = $\frac{b}{2\left(b+\sqrt{1+b^2}\right)}$ y r(K) =

Resolviendo la ecuación
$$r(I) = r(J) + r(K) \Leftrightarrow \frac{b}{1+b+\sqrt{1+b^2}} = \frac{b}{2\left(b+\sqrt{1+b^2}\right)} + \frac{b}{2\left(b+\sqrt{1+b^2}\right)}$$

$$\begin{array}{c} & b \\ \hline 2 \left(b + \sqrt{1 + b^2} \ \right) \left(1 + \sqrt{1 + \frac{1}{\left(b + \sqrt{1 + b^2} \ \right)^2}} \ \right) \end{array}$$

obtenemos (*) b = $\sqrt{\frac{1+\sqrt{5}}{2}}$, por lo que AB = $\sqrt{\phi}$, BC = 1 y CA = ϕ y el triángulo ABC es de Kepler.

Nota

(*) Eliminando b y haciendo $k = b + \sqrt{1 + b^2}$, la ecuación anterior queda

 $\frac{1}{1+k} = \frac{1}{2 k} + \frac{1}{2 k \left(1+\sqrt{1+\frac{1}{k^2}}\right)}$ De todas formas el resultado se obtuvo con "Mathematica".