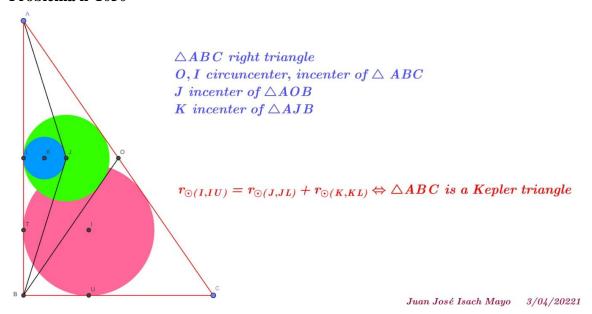
Problema n°1050



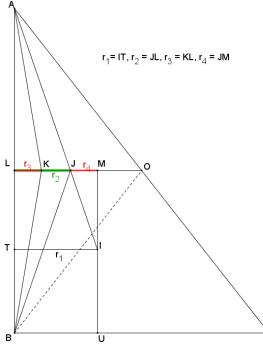
Solution proposée par Philippe Fondanaiche

Avec les notations de la figure ci-après, on pose $r_1 = IT$, $r_2 = JL$, $r_3 = KL$ et $r_4 = JM$ Les côtés du triangle ABC sont désignés par BC = a (= 1 sans perte de généralité), BC= b et AB = c, b > 1.

$$1^{er} \cos r_1 + r_2 = r_3$$

Démontrons que le triangle ABC est un triangle de Képler défini par :

$$BC = 1, \ AC = \ \phi = \frac{\sqrt{5} + 1}{2} \ \ \text{et } AB = \ \sqrt{\phi} = \sqrt{\frac{\sqrt{5} + 1}{2}} \ .$$



Comme les triangles rectangles ALJ et IMJ sont semblables on a : $r_4/MI = r_2/AL$ avec $MI = c/2 - r_1$ avec $r_1(1+b+c) = 2$ fois aire triangle ABC = 1*c = c, soit $\mathbf{r_1} = \mathbf{c}/(\mathbf{b} + \mathbf{c} + \mathbf{1})$ AL = AB/2 = c/2 et $r_2(2b+2c) = 2$ fois aire triangle AOB = c/2, soit $\mathbf{r_2} = \mathbf{c}/2(\mathbf{b} + \mathbf{c})$ Il en résulte que $r_3 = r_4 = r_2.MI/AL = (\mathbf{b} + \mathbf{c} - \mathbf{1}) \, \mathbf{r_2}/(\mathbf{b} + \mathbf{c} + \mathbf{1})$ Par ailleurs $r_3(c+2AJ) = 2$ fois aire triangle ABJ = r_2c . D'où AJ = c/(b+c-1). AJ est l'hypoténuse du triangle rectangle ALJ \Rightarrow AJ² = AL² + JL². D'où $c^2/(b+c-1)^2 = c^2/4 + c^2/4(b+c)^2$ qui se ramène à : $4/(b+c-1)^2 = 1 + 1/(b+c)^2$ On pose b+c=x et l'on obtient l'équation en x:

 $4/(x-1)^2 = 1 + 1/x^2$ qui a pour racine $x = \varphi + \sqrt{\varphi}$ avec $\varphi = \text{nombre}$

Comme IT = ML = MJ + JL, la relation $r_1 = r_2 + r_4$.entraine $r_3 = r_4$.

Comme
$$b^2 = c^2 + 1$$
, on en déduit $\mathbf{b} = \mathbf{\phi}$ et $\mathbf{c} = \sqrt{\mathbf{\phi}}$

d'or (voir annexe).

$$2^{\text{ème}}$$
 cas BC = 1, AB = $c = \sqrt{\phi}$, AC = $b = \phi$

Démontrons que $r_1 = r_2 + r_3$. On reprend les formules du premier cas avec :

$$r_1 = c/(b+c+1) = \sqrt{\phi}/(1+\sqrt{\phi}+\phi)$$
 et $r_2 = \sqrt{\phi}/2(\sqrt{\phi}+\phi) = 1/2(\sqrt{\phi}+1)$

Comme $AJ^2 = AL^2 + JL^2$ avec $r_2 = JL$, on en déduit $4AJ^2 = \phi + 1/(\sqrt{\phi} + 1)^2$.

Par ailleurs $r_3(c+2AJ)=r_2c$. D'où $r_3=r_2\sqrt{\phi}/(\sqrt{\phi}+2AJ)$

Il s'agit de montrer que :
$$\frac{\sqrt{\phi}}{(1+\sqrt{\phi}+\phi)} = \frac{1}{2(1+\sqrt{\phi})} + \frac{\sqrt{\phi}}{2(1+\sqrt{\phi})(\sqrt{\phi}+\sqrt{\phi+\frac{1}{(\sqrt{\phi}+1)^2}})}$$
 (R)

On vérifie que
$$\sqrt{\phi} + \sqrt{\phi + \frac{1}{(\sqrt{\phi} + 1)^2}} = \phi + 1$$
.

Il en résulte que la relation (R) se ramène à $(1 + \sqrt{\varphi} + \varphi)^2 = 2(\varphi + \sqrt{\varphi})(\varphi + 1)$ qui se vérifie aussi aisément.

Vérification numérique

Avec des valeurs numériques à 10 décimales données supra de r₁,r₂ et r₃, on obtient :

 $r_1 = 0.3269928304...$

 $r_2 = 0.2200685193...$

2AJ = 1,3460143392...

 $r_3 = 0,1069243111...$

et $r_1 = r_2 + r_3$

Annexe

D'après Wolfram Alpha

solve
$$1 + \frac{1}{x^2} = \frac{4}{(x-1)^2}$$

Results

$$x = \frac{1}{2} \left(1 - \sqrt{5} - i \sqrt{2(\sqrt{5} - 1)} \right)$$

$$x = \frac{1}{2} \left(1 - \sqrt{5} + i \sqrt{2(\sqrt{5} - 1)} \right)$$

$$x = \frac{1}{2} \left(1 + \sqrt{5} - \sqrt{2(1 + \sqrt{5})} \right)$$

$$x = \frac{1}{2} \left(1 + \sqrt{5} + \sqrt{2(1 + \sqrt{5})} \right)$$