Pr. Cabri 1052

Enunciado

Sea ABC un triángulo isósceles (AB=AC+BC).

Consideremos la circunferencia inscrita mixtilínea tangente en E a AC, en D a la circunferencia circunscrita a ABC y en F a AB.

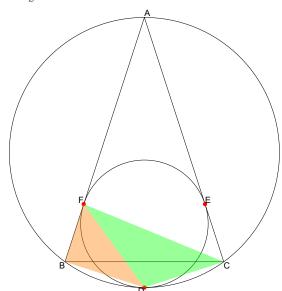
Probar que ABC es triángulo de oro \leftrightarrow (1/AB)+(1/BC)= 2/AF \leftrightarrow [CFD]/[BDF]= Φ

Propuesto por Juan José Isach Mayo, España.

Solución

de César Beade Franco

Consideremos el triángulo A(0,b), B(-1,0) y C(1,0), Su circuncírculo es $\alpha((0, \frac{2b^2-2}{4b}), \frac{1+b^2}{2b})$. La circunferencia del problema es una de las circunferencias de Apolonio tangentes a las rectas AB y AC y a la circunferencia α . Dicha circunferencia es $\omega((0, \frac{-1-2 \cdot b^2 + \left(1+b^2\right)^{3/2}}{b^3}), \frac{1+b^2 - \left(1+b^2\right)^{3/2}}{b^3})$.



Los puntos de tangencia de ω con AB, AC y α son $F(-\frac{1}{1+\frac{1}{\sqrt{1-b}}}, \frac{-1+\sqrt{1+b^2}}{b})$,

E(
$$\frac{1}{1+\frac{1}{\sqrt{1+b^2}}}$$
, $\frac{-1+\sqrt{1+b^2}}{b}$) y D(0, $-\frac{1}{b}$).

El tríángulo ABC es áureo si b= $\sqrt{5+2\sqrt{5}}$. Resolviendo la ecuación (1/AB)+(1/BC)= 2/AF $\Leftrightarrow \frac{2}{1+b^2}+\frac{1}{2}=\frac{1}{\sqrt{1+b^2}}$ obtenemos el citado

valor de b. Y lo mismo sucede con la otra ecuación [CFD]/[BDF]= $\Phi \Leftrightarrow 1 + \frac{2}{\sqrt{1+b^2}} = \frac{1}{2} \left(1 + \sqrt{5}\right)$.