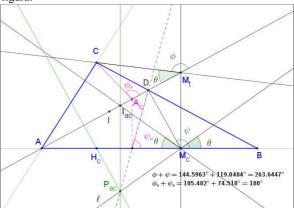
Problema 1053

Propuesto por Miguel-Ángel Pérez García-Ortega, profesor de Matemáticas en el IES "Bartolomé-José Gallardo" de Campanario (Badajoz)

Aquí la notación original está cambiada.

Dado un triángulo ABC (con incentro $I=X_1$), sean DEF el triangulo ceviano de I y M_t un punto sobre AI, tal que $AM_t:M_tI=t$ (número real). Se denota por M_c la proyección ortogonal de M_t sobre AB.

Se toman los ángulos Φ y ψ como se indica en la figura:



Encontrar la posición de M_t , sobre AI, tal que $\Phi + \psi = \pi$.

La ecuación baricéntrica de la recta ℓ que pasa por M_c y forma con AB el mismo ángulo (cot $\theta = (b+c-a) (a+b+c+(a+b-c)t)/(2S(1+t))$ que la recta CM_t con AI es:

$$\ell$$
: (a-b-c) c t x+c ((a-b) t+c (2+t)) y+(-b c (-2+t)-c^2 (-2+t)+3 a c t-2 a^2 (1+t)+2 b^2 (1+t)) z = 0

Esta recta pasa por D si t = -2(a+b+c)/(2a+b-c), o sea cuando $M_t = (c-b: 2 b: 2 c)$. Se trata del punto A_c , tal que $AA_c: A_cD = 2(b+c): c-b$.

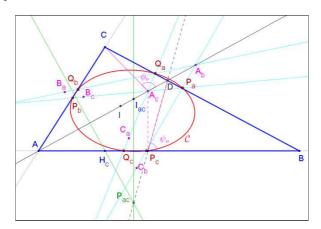
La recta ℓ pasa por un punto fijo $P_{ac}(-a^2+b^2+b c-2 c^2:a^2-b^2-b c-c^2:c^2)$, cuando M_t recorre AI.

Para construir P_{ac} y A_c , sean H_c y I_{ac} las proyecciones ortogonales de C sobre AB y AI, respectivamente. Las perpendiculares por H_c y I_{ac} a AI y AB, respectivamente, se cortan en P_{ac} .

Intercambiendo B y C en la construcción anterior, se obtiene el punto A_b , sobre AI. Por permutación cíclica, se definen otros dos pares de puntos $\{B_a, B_c\}$ y $\{C_b, C_a\}$, situados sobre las bisectrices en B y C, respectivamente.

Tomando rectas que pasan por pares de estos seis puntos, se obtienen los puntos $P_a = A_b C_b \cap A_c B_c$, $Q_a = A_b B_a \cap A_c C_a$ y, similarmente, P_b , P_c y Q_b , Q_c .

Los seis puntos $P_{\rm a}, P_{\rm b}, P_{\rm c}, Q_{\rm a}, Q_{\rm b}$ y $Q_{\rm c}$ están sobre una cónica $\mathscr C$.



La $\underline{\text{ecuación}}$ de \mathscr{C} y las $\underline{\text{coordenadas}}$ de su centro son bastante extensas.