D140 Un vrai feu d'artifices [**** à la main]

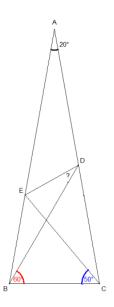
Ce problème est une extension du problème D120 – Un triangle isocèle très richement doté – Le triangle isocèle dont l'angle au sommet vaut 20° donne l'occasion de réaliser un vrai feu d'artifices si l'on regarde toutes les configurations possibles remarquables qu'on obtient en lançant seulement quelques fusées, c'est à dire en traçant quelques lignes.

Question n°1

On part de la figure ci-contre :

Le triangle ABC est isocèle de sommet A avec $\angle BAC = 20^{\circ}$. On trace le point D sur le côté AC tel que $\angle CBD = 60^{\circ}$ et le point E sur le côté AB tel que $\angle BCE = 50^{\circ}$. Il s'agit de trouver l'angle $\angle BDE$.

Indépendamment de la solution trigonométrique, donner au moins trois solutions géométriques différentes.

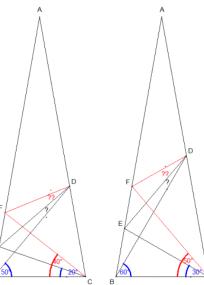


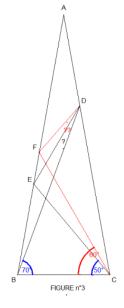
Question n°2

Toujours avec le même triangle isocèle ABC de sommet A et d'angle au sommet \angle BAC = 20°, on considère les trois figures ci-contre :

- -dans la figure n°1, le point D sur AC et les points E et F sur AB sont tels que \angle CBD = 50°, \angle BCE = 20° et \angle CFD = 40°.
- -dans la figure n°2, \angle CBD = 60°, \angle BCE = 30° et \angle CFD = 50°.
- -dans la figure n°3, \angle CBD = 70°, \angle BCE = 50° et \angle BCF = 60°.

Comparer d'une part les angles ∠BDE des trois figures et d'autre part les angles ∠EDF des figure n°1 et n°2 entre eux et à l'angle ∠BDF de la fig





Question n°3

Dans la figure ci-contre, on considère les points

D et G d'une part, E,F,H d'autre part respectivement situés sur les côtés AC et AB du triangle isocèle ABC tels que :

$$\angle$$
 CBD = 70°

$$\angle$$
 BCE = 60°

$$\angle$$
 BCF = 50°

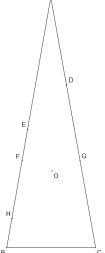
$$\angle$$
 CBG = 50°

$$\angle$$
 BCH = 20°

Par ailleurs, on trace le point O à l'intersection de CE et de la médiatrice de BC. On pose BC = 1.

3-1) Trouver tous les segments qui ont pour extrémités un couple de points choisis exclusivement parmi {A,B,C,D,E,F,G,H,O}et qui sont tous de longueur unité.

3-2) Démontrer que DE = EG = OH et BH = OF = OG = EF.



Solution

Question n°1

Solution trigonométrique

Soit $x = \angle BDE$ l'angle à déterminer.

Comme \angle BEC =180°- 80° -50° = 50°, le triangle BCE est isocèle

de sommet B et l'on a BE = BC.

La loi des sinus appliquée respectivement dans les triangles BED et

BCD permet d'écrire:

$$\frac{\sin(160^{\circ} - x)}{\sin(x)} = \frac{BD}{BE} = \frac{BD}{BC} = \frac{\sin(80^{\circ})}{\sin(40^{\circ})}$$

Il en résulte : $\sin(160^\circ-x)*\sin(40^\circ) = \sin(80^\circ)*\sin(x)$

Comme $\sin(180^{\circ}-a) = \sin(a)$ on a $:\sin(160^{\circ}-x) = \sin(x+20^{\circ})$.

Par ailleurs $\sin(80^\circ) = 2*\sin(40^\circ)*\cos(40^\circ)$.

D'où $\sin(x+20^\circ) = 2\cos(40^\circ) * \sin(x)$

Comme $\sin(a)*\cos(b) = [\sin(a+b) + \sin(a-b)]/2$ (1),

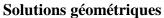
on a $2*\cos(40^\circ)*\sin(x) = \sin(x+40^\circ) + \sin(x-40^\circ)$.

D'où $\sin(x+20^{\circ}) - \sin(x-40^{\circ}) = \sin(x+40^{\circ})$.

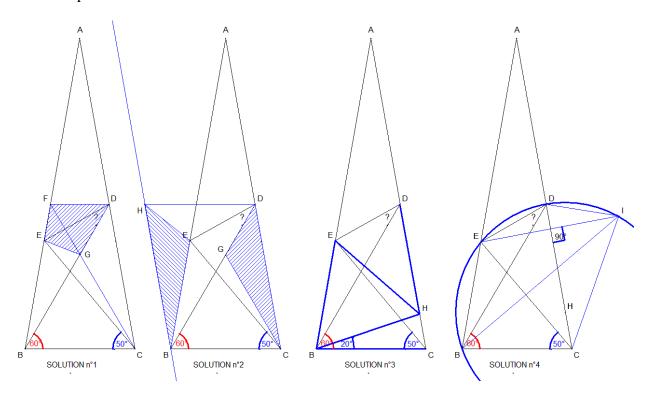
Or toujours d'après (1), on a $\sin(x+20^\circ) - \sin(x-40^\circ) = 2*\cos(x-10^\circ)*\sin(30^\circ)$.

Comme $\sin(30^\circ)$ ='1/2 et que $\sin(a) = \cos(90^\circ - a)$, on obtient $\cos(x-10^\circ) = \sin(x+80^\circ) = \sin(x+40^\circ) = \sin(140^\circ - x)$.

La solution unique est alors $x = \angle BDE = 30^{\circ}$.



On n'en compte pas moins de huit différentes les unes des autres, certaines ayant toutefois entre elles un air évident de parenté :



Solution n°1

On mène DF parallèle à BC. La droite CF coupe BD en G. Le triangle BCG est équilatéral ainsi que le triangle DFG.

Le triangle BCE est isocèle de sommet B (voir plus haut la solution trigonométrique). On a donc BE = BC. Comme BC = BG, on en déduit que le triangle BEG est isocèle de sommet B et \angle BEG = 80°. Il en résulte que \angle EGF = 80° - \angle EFG = 80° - (180° - 80° - 60°) = 40° = \angle EFG. Le triangle EFG est isocèle de sommet E. D'où \angle BDE = 180° - \angle EGD - \angle DEG = 180° - (40°+60°) - 100°/2 = 30°

Solution n°2

On mène par B la parallèle au côté AC qui rencontre la parallèle issue de D à BC au point H. Soit G le sommet du triangle équilatéral dont la base est le côté BC. Les deux triangles CDG et BHE sont égaux car ils ont le même angle \angle DCG = \angle EBH = 20° compris entre des côtés égaux : BE = BC = CG et BH = DC dans la parallélogramme BCDH. Il en résulte \angle BHE = \angle CDG = 40°. D'où \angle DHE = \angle BHD - \angle BHE = 80° - 40° = 40°.

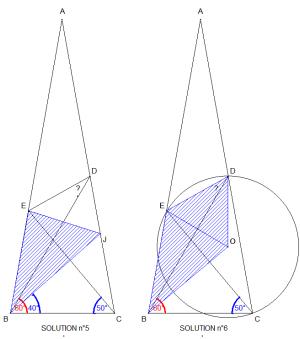
Comme \angle DBE = \angle EBH = 20°, le point E est le centre du cercle inscrit au triangle BDH. DE est la bissectrice de \angle BDH et \angle BDE = (\angle CDH - \angle CDG)/2 = (100° - 40°)/2 = 30°.

Solution n°3

On trace le point H sur AC tel que \angle CBH = 20°. Il apparaît que le triangle CBH est isocèle de sommet B . D'où BH = BC = BE. Le triangle BHE est donc isocèle et comme son angle au sommet B vaut 80° - 20° = 60°, il est équilatéral. Par ailleurs, le triangle HBD est isocèle de sommet H car les deux angles adjacents au côté BD valent \angle HBD = \angle HDB = 40°. Il en résulte que HD = HB = HE. Le triangle HED est isocèle de sommet H et \angle DHE = 180° - 80° - 60° = 40°. D'où \angle EDH = (180° - 40°)/2 = 70° et \angle BDE = 70°-40° = 30°.

Solution n°4

Soit I le point symétrique de E par rapport à AC. Comme l'angle au sommet C vaut $2* \angle DCE = 60^\circ$, le triangle CEI est équilatéral. Le triangle BCE est isocèle de sommet B. Il en résulte que IB est bissectrice de \angle CIE et \angle BIE=30°. D'autre part \angle DBI = 60° - \angle CBI = 20° = \angle DBE. BD est donc bissectrice de \angle EBI. On considère le cercle circonscrit au triangle BEI. (on note au passage que son centre est le point H défini dans la solution n°3). Le point D à l'intersection de la bissectrice de \angle EBI duquel on voit l'arc de cercle EI et de la médiatrice de la corde EI qui sous-tend ce même arc. D appartient donc au cercle et \angle BDE = \angle BIE = 30° .



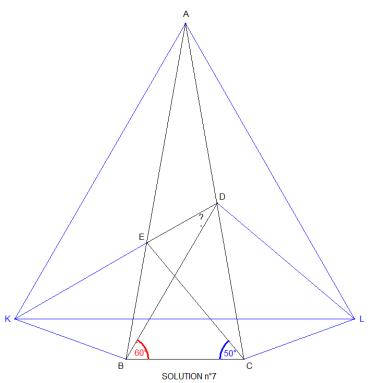
Solution n°5

On trace la bissectrice de \angle ABC qui coupe AC au point J. Comme le triangle BCE est isocèle, BJ est médiatrice de CE et \angle BJE = \angle BJC = 180° - 80° - 40° = 60°. On a par ailleurs \angle DBJ = 60° - 40° = 20° = \angle DBE. Dès lors D est à l'intersection de la bissectrice de \angle EBJ et de l'angle supplémentaire de \angle BJE. C'est donc le centre de l'un des trois cercles exinscrits au triangle BEJ. Dès lors DE est la bissectrice de \angle AEJ et \angle BDE = 180° - \angle DBE - \angle BDE = 180° - 20° - (\angle BEJ + \angle AEJ/2) = 160° - 80° - 100°/2 = 30°.

Solution n°6

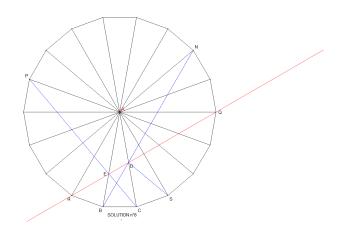
Soit le cercle de centre O circonscrit au triangle CDE. Comme \angle DCE=30°, l'angle au centre \angle DOE est égal à 60° et le triangle DOE est équilatéral. D est donc sur la médiatrice de EO. Par ailleurs BD est bissectrice de \angle EBO car \angle BDE = 20° = \angle DBO = 60° - 40° = 20°. Si la médiatrice de EO était différente d BD, alors le point D serait sur le cercle circonscrit au triangle BEO et l'on aurait \angle EBO + \angle EDO = 180°, ce qui n'est pas le cas. Donc BD est médiatrice de EO et \angle BDE = 60°/2 = 30°.

Solution n°7



On trace les deux triangles ABK et ACL symétriques du triangle ABC respectivement par rapport aux côtés AB et AC. Le triangle AKL dont l'angle au sommet A vaut $3*20^\circ=60^\circ$ est équilatéral. Il en résulte que \angle BKL = 80° - 60° = 20° . Comme par construction \angle BKE = \angle BCE = 50° , on a \angle EKL = \angle BKE - 20° = 30° et la droite EK est bissectrice de \angle AKL. Par ailleurs, le triangle DAL est isocèle de sommet D car les angles adjacents à la base AL \angle DAL et \angle DLA sont égaux l'un et l'autre à 20° . D est donc sur la médiatrice de AL et coïncide à l'intérieur du triangle équilatéral AKL avec la bissectrice de \angle AKL issue de K. D'où \angle BDE = 180° - \angle BKD- \angle DBK = 180° - 50° - 80° - 20° = 30° .

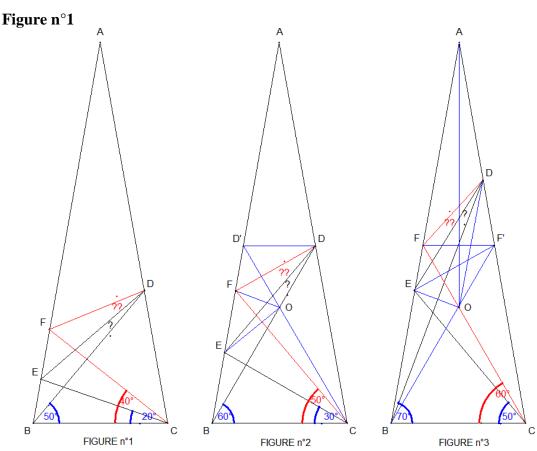
Solution n°8



On considère le polygone régulier à 18 côtés de centre A et de rayon R = AB = AC. Le triangle isocèle ABC

est l'un des 18 « pétales » constitutifs de ce polygone avec l'angle au sommet A égal à $360^{\circ}/18 = 20^{\circ}$. On vérifie que la droite BD rejoint le sommet N du polygone tandis que la droite CE passe par le sommet P (voir figure ci-dessus). En effet l'arc CN correspond bien à 60° soit 120° pour l'angle au centre soit le $6^{\text{ème}}$ sommet à partir de C dans le sens trigonométrique tandis que l'arc BP correspond à un angle de 50° soit 100° pour l'angle au centre soit le $5^{\text{ème}}$ sommet à partir de B dans le sens des aiguilles d'une montre. Soient Q le $4^{\text{ème}}$ sommet du polygone à partir de C dans le sens trigonométrique, R le sommet adjacent à B autre que C et S le sommet adjacent à C autre que B. La corde QR passe par D et E. En effet, QR est médiatrice de AS et passe par D qui est le sommet du triangle isocèle DAS (comme l'est DAB). Par ailleurs \angle QRB = $5*20^{\circ}/2 = 50^{\circ} = \angle$ ERB .QR passe donc bien par E.

Question n°2



Le triangle BCE est isocèle de sommet C. D'où CB = CE. Comme CB = CD et que \angle DCE= 80° - 20° = 60° , il en découle que le triangle CDE est équilatéral. D'où \angle CDE = 60° et \angle BDE = 60° - 50° = 10° . Par ailleurs CF est bissectrice de \angle ACB. Comme CB = CD, les deux triangles CBF et CDF sont égaux. Il en résulte que \angle CDF = 80° et \angle EDF = 80° - 60° = 20° .

Figure n°2

Soit O le sommet du triangle équilatéral de base BC.La droite CO coupe AB en un point D' tel que AD = AD'. ODD' est également un triangle équilatéral. Comme \angle BCE=30°, CE est médiatrice de BO et les triangles BCE et OCE sont égaux. Il en résulte \angle CEO = 70°. D'où \angle D'EO = 180° - 140° = 40° et le triangle OD'E est isocèle de sommet O avec \angle D'EO = \angle ED'0 = 40°. On a donc OE = OD' = OD et le triangle OED est isocèle. Comme \angle EOC = \angle EBC = 80°, on a \angle BOE = 20° = 2 \angle EDB. D'où \angle EDB = 10°.

D'après la question n°1, on sait « abondamment » que $\angle BDF = 30^\circ$. Il en résulte que $\angle EDF = 20^\circ$.

Figure n°3

Comme dans la figure n°2, on trace le point O sommet du triangle équilatéral de base BC. BO coupe AC en F' sur AC tel qu AF' = AF. BD est bissectrice de \angle ABF = 20° avec \angle ABD = \angle DBF = 10°. Il en est de même de AO qui est bissectrice de \angle BAC = 20°. Le quadrilatère ADOB est donc un trapèze isocèle tel que \angle BDO = \angle ABD = 10° = \angle AOD = \angle BAO. Comme BE = BO, le triangle BEO est isocèle de sommet O, le

triangle OBD est aussi isocèle de sommet O. Le quadrilatère BEDO est alors un losange et l'on a \angle BDE = 10° .

Les triangles ADF et BEF' sont égaux. En effet AD = BO = BC = BE (ADOB est un trapèze isocèle), BF' = CF = AF (FAC est isocèle de sommet F avec \angle FAC = \angle FCA = 20°), \angle DAF = \angle EBF = 20°. D'où \angle AFD = \angle EF'O = \angle FF'O/2 = 30°. D'où \angle FDF' = 180° - 80° - (80°-30°) = 50° et \angle BDF = 50°-(180°-70°-80°) = 20°

Conclusion : Les angles \angle BDE sont tous égaux à 10° dans les trois cas de figure tandis que les angles \angle EDF des figures n°1 et n°2 prennent la même valeur de 20° comme \angle BDF dans la figure n°3.

Question n°3

A partir des démonstrations faites dans les réponses aux questions $n^{\circ}1$ et $n^{\circ}2$, on observe que :

- les triangles OBC et CGH sont équilatéraux,
- le quadrilatère BFOD est un losange, le quadrilatère ABOD est un trapèze isocèle ainsi que le trapèze BHOG, le quadrilatère DEHO est un parallélogramme,
- les triangles DAO, OBD, HEG, EDG, OFG, FEO, CBH sont isocèles.
- sans compter les triangles égaux entre eux...

Il en résulte que :

$$BC = OB = OC = VH = CG = GH = BF = HE = DO = AD = 1$$

Il y a donc segments de longueur égale à la base BC du triangle isocèle ABC. Par ailleurs, on retrouve facilement les égalités : DE = EG = OH et BH = OF = OG = EF qui résultent des propriétés des triangles mentionnés ci-dessus.

