Problema 1056

Sea ABC un triángulo equilátero, y sea Ω su circunferencia inscrita de radio r.

Sea P un punto arbitrario de la misma.

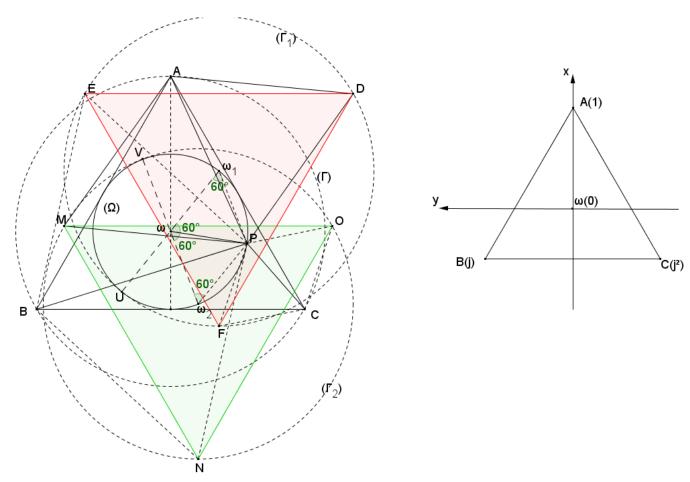
Construyamos los equiláteros PAD, PBE, PCF., y los APM, BPN, CPO.

Probar que los triángulos DEF y MNO son equivalentes a ABC

Probar que las circunferencias circunscritas a DEF y a MNO son tangentes a Ω , tienen sus centros en Ω y sus radios son 2r.

Barroso, R. (2022): Comunicación personal.

Solution proposée par Philippe Fondanaiche



Sans perte de généralité, on pose $\omega A = \omega B = \omega C = 1$. On déduit r = rayon du cercle inscrit $(\Omega) = 1/2$ et $AB = BC = CA = \sqrt{3}$

Dans le plan complexe ωxy , les sommets A,B et C sont les points d'affixes $z_A = 1$, $z_B = j = (-1 + i\sqrt{3})/2$, $z_C = j^2 = (-1 - i\sqrt{3})/2$ avec $i^2 = -1$.

Soit z_P l'affixe du point courant P sur le cercle (Ω) . On pose $z_P = re^{i\alpha}$ avec α compris entre 0 et 2π .

On calcule les affixes des points D,E et F puis des points M,N et O en exprimant le fait que ces points sont les images des points A,B,C par des rotations successives d'angle $\pi/3$ et de centre P.

D'où
$$(z_D - z_P)/(z_A - z_P) = e^{i\pi/3}$$
 $\Rightarrow z_D = re^{i\alpha} + (1 - re^{i\alpha})e^{i\pi/3}$

De la même manière $z_E=re^{i\alpha}+(j-re^{i\alpha})\,e^{i\pi/3}$ et $z_F=re^{i\alpha}+(j^2-re^{i\alpha})\,e^{i\pi/3}$

On en déduit
$$(z_F - z_D) / (z_E - z_D) = (j^2 - 1)/(j - 1) = 1 + j = -j^2 = e^{i\pi/3}$$

Par ailleurs module de (z_F-z_D) = module de (j^2-1) $e^{i\pi/3}$ = module de $(3+i\sqrt{3}).(1+i\sqrt{3})/4=\sqrt{3}$ et module de (z_E-z_D) = module de (j-1) $e^{i\pi/3}$ = module de $(-3+i\sqrt{3}).(1+i\sqrt{3})/4=\sqrt{3}$

Il en résulte que les points D,E,F sont les sommets d'un triangle équilatéral dont les côtés (= $\sqrt{3}$) sont égaux aux côtés du triangle ABC.

Le raisonnement appliqué aux points M,N,O avec le coefficient de rotation $e^{-i\pi/3}$ à la place de $e^{i\pi/3}$ conduit au même résultat : le triangle MNO est équilatéral de côté $\sqrt{3}$.

Le rayon du cercle circonscrit au triangle ABC est égal à $\omega A = \omega B = \omega C = 1$. C'est le double du rayon $r = \frac{1}{2}$ du cercle (Ω) .

Les rayons des cercles circonscrits aux triangles équilatéraux DEF et MNO sont donc égaux à 1. De même que les trois rotations de centre P et d'angle $\pi/3$ transforment les points A,B,C en les points D,E,F, le centre ω_1 du cercle (Γ_1) circonscrit au triangle DEF est l'image du point ω par rotation de centre P et d'angle $\pi/3$. Le triangle $\omega P \omega_1$ est équilatéral et le point ω_1 est situé sur le cercle (Ω) de rayon 1/2. Il en résulte que le cercle (Γ_1) de centre ω_1 de rayon 1 est tangent au cercle (Ω) de diamètre 1. De la même façon le cercle (Γ_2) circonscrit au triangle MNO de centre ω_2 de rayon 1 est tangent au cercle

 (Ω) . C.q.f.d.