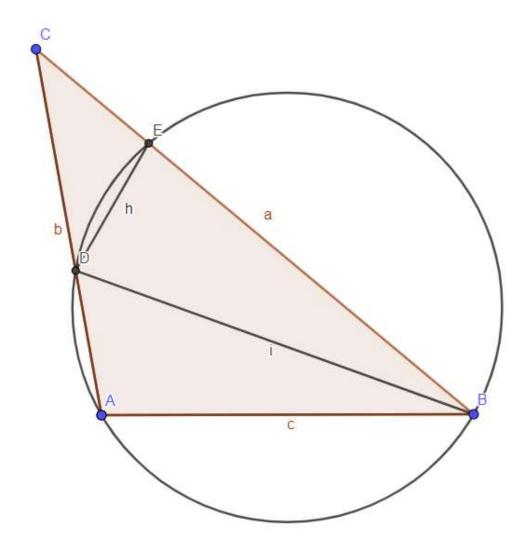
Problema 2.-

Sean ABC un triángulo isósceles con $4BAC = 100^{\circ}$. La bisectriz del ángulo 4CBA corta al lado AC en el punto D. Demostrar que BD + DA = BC.

Fase local OME Viernes 21 de Enero de 2022

Solución de Ricardo Barroso Campos. Profesor jubilado. Sevilla



La circunferencia inscrita al triángulo ADB corta a CB en E.

 $\angle DAB=100^{\circ}$ luego $\angle DEB=80^{\circ}$ y como $\angle EBD=20^{\circ}$ resulta que $\angle BDE=80^{\circ}$ Así BD=BE.

Por otra parte tenemos $\angle EAD = \angle AED = 20^{\circ}$ luego al ser ADE isósceles es AD=DE.

Además es $\angle CED = 180^{\circ} - \angle DEB = 100^{\circ}$, y $\angle CDE = 180^{\circ} - \angle CED - \angle DEC = 40^{\circ}$, por lo que el triángulo CDE es isósceles y de todo ello es EC=ED=AD.

Así, c.q.d., es BC=BD+DA