Del 1 al 16 de noviembre de 2022.

Propuesto por Juan José Isach Mayo, España y Miguel-Ángel Pérez García-Ortega, profesor de Matemáticas en el IES "Bartolomé-José Gallardo" de Campanario (Badajoz).

Problema 1063.- Dado un triángulo ABC con incentro I e inradio r, se consideran el centro J, el radio ρ de la A-circunferencia mixtilínea inscrita y el punto medio Q del segmento VW, donde V y W son los puntos de tangencia entre su incírculo y las rectas AC y AB respectivamente.

Probar que:

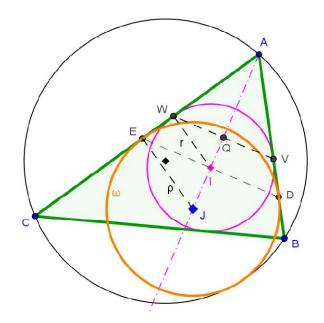
1) a)
$$1 < \frac{\rho}{r} = \frac{JI}{IO}$$

b) $\frac{\rho}{r} \le 2 \iff \angle BAC \le \frac{\pi}{2}$, dándose la igualdad si y sólo si el triángulo ABC es rectángulo en A.

c)
$$\frac{\rho}{r} \leq 1 + \frac{a^2}{(b+c)^2 - a^2}$$
, dándose la igualdad si y sólo $b=c$.

2) Dado un segmento BC determinar el lugar geométrico que debe describir el punto A para que $\frac{\rho}{r}=\varphi$. Isach J.J., Pérez, M.A. (2022): Comunicación personal

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



1) a) Vamos a utilizar resultados obtenidos anteriormente.

En el problema 702 ($2^{\rm e}$ quincena de marzo de 2014) o en el 522 (octubre de 2009) se demostró que el incentro I es el punto medio del segmento construido con los puntos de contacto de la A-circunferencia ω con los lados del ángulo A, y por tanto este segmento es perpendicular a la bisectriz de A.

En el problema 690 se calcula $AD = AE = \frac{bc}{s}$ donde s es el semiperímetro.

Sabemos también que AV = AW = s - a. Comparando estos dos números es inmediato ver que s - a < bc/s, o bien que $\frac{s(s-a)}{bc} = \cos^2(A/2) < 1$ de lo cual se

deduce de inmediato que $\frac{\rho}{r} = \frac{AE}{AW} = \frac{bc/s}{s-a} = \frac{1}{\cos^2 A/2} > 1$.

La semejanza de los triángulos rectángulos EJI y WIQ sirve para concluir esta parte.

b) Si $\frac{\rho}{r} \le 2$ tendremos $\cos^2 A/2 \ge \frac{1}{2}$. El ángulo A/2 estaría entre los valores de $(0,\pi/4)$, por tanto A es también agudo y recíprocamente.

c)
$$1 + \frac{a^2}{(b+c)^2 - a^2} = \frac{(b+c)^2}{4bc \cdot \cos^2 A/2}$$
. Se trata de probar que $\frac{\rho}{r} = \frac{1}{\cos^2 A/2} \le \frac{(b+c)^2}{4bc \cdot \cos^2 A/2}$.

Suprimiendo el coseno de los denominadores se llega a $4bc \le (b+c)^2 \Leftrightarrow 0 \le (b-c)^2$ que es bien evidente y se da la igualdad cuando b=c.

2) El lugar geométrico de A ha de ser un arco desde el que se vea el segmento bajo el ángulo definido por la condición $\frac{\rho}{r}=\varphi$. Teniendo en cuenta que $\varphi^{-1}=\varphi-1$, se tendrá $\cos^2 A/2=\frac{1}{\varphi}=\varphi-1=\frac{\sqrt{5}-1}{2}$.

A partir de aquí calculamos $\cos A = 2\cos^2 A/2 - 1 = \sqrt{5} - 2$.

El lugar geométrico es el arco capaz del segmento BC y amplitud arc $\cos(\sqrt{5}-2)=76.3454^\circ$.