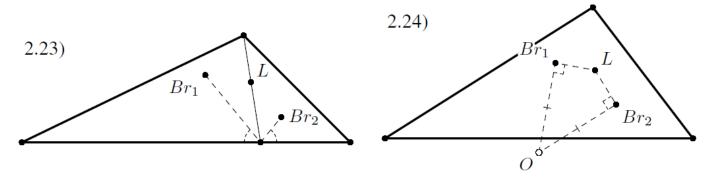
Problema 1066.

Sea un triángulo ABC. Sean Br₁ Br₂ sus puntos de Brocard.

a) Sea T el pie de la simediana del vértice A.

Probar que los triángulos BBr₁T y CBr₂T son semejantes.

Probar que OBr₁=OBr₂, LBr₁=LBr₂, <OBr₁L=<OBr₂L=90°



Akopyan, A. (2019): Figures sans paroles. (2.23, 2.24)

Solution proposée par Philippe Fondanaiche

On désigne par a,b et c les côtés BC,CA er AB du triangle ABC.

Le problème se résout rapidement à l'aide des coordonnées barycentriques homogènes (supposées connues***) du centre O du cercle circonscrit des triangle ABC, du point de Lemoine L et des deux points de Brocard Br₁ et Br₂, à savoir :

O:
$$[(b^2 + c^2 - a^2)/b^2c^2, (c^2 + a^2 - b^2)/c^2a^2, (a^2 + b^2 - c^2)/a^2b^2]$$

L: $[1/b^2, 1/a^2, c^2/a^2b^2]$

 $Br_1: [1/b^2, 1/c^2, 1/a^2]$

 $Br_2: [1/c^2, 1/a^2, 1/b^2]$

Par ailleurs on utilise la propriété bien connue de la symédiane selon laquelle le point T pied de la symédiane issue de A sur BC obéit à la relation $TB/TC = c^2/b^2$.

Les triangles BBr₁T et CBr₂T sont semblables.

Les points de Brocard sont caractérisés par l'angle de Brocard $\omega = \angle Br_1BT = \angle Br_2CT$.

Soient h_1 et h_2 les hauteurs issues de Br_1 et Br_2 dans les triangles BBr_1T et CBr_2T . Le ratio h_1/h_2 est égal à la première coordonnée barycentrique de Br_1 rapportée à la première coordonnée barycentrique de Br_2 , soit $h_1/h_2 = (1/b^2)/(1/c^2) = c^2/b^2 = TB/TC$.

Les deux hauteurs étant vues sous le même angle ω , les deux triangles BBr_1T et CBr_2T sont bien semblables avec un rapport d'homothétie = c^2 ./ b^2 .

Les distances OBr1 et OBr2 sont égales.

Les vecteurs correspondant à ces deux distances ont pour composantes :

OBr₁:
$$[1/b^2 - (b^2 + c^2 - a^2)/b^2c^2, 1/c^2 - (c^2 + a^2 - b^2)/c^2a^2, 1/a^2 - (a^2 + b^2 - c^2)/a^2b^2]$$

Soit $[(a^2 - b^2)/b^2c^2, (b^2 - c^2)/c^2a^2, (c^2 - a^2)/a^2b^2]$

OBr₂:
$$[1/c^2 - (b^2 + c^2 - a^2)/b^2c^2, 1/a^2 - (c^2 + a^2 - b^2)/c^2a^2, 1/b^2 - (a^2 + b^2 - c^2)/a^2b^2]$$

Soit $[(a^2-c^2)/b^2c^2, (b^2-a^2)/c^2a^2, (c^2-b^2)/a^2b^2]$

On utilise le théorème suivant :

Theorem 7 (Distance Formula). Consider a displacement vector $\overrightarrow{PQ} = (x, y, z)$. Then

$$|PQ|^2 = -a^2yz - b^2zx - c^2xy$$

D'où
$$a^2b^2c^2$$
. $OBr_1^2 = (c^2 - b^2)(c^2 - a^2) + (b^2 - a^2)(c^2 - a^2) + (b^2 - a^2)(b^2 - c^2)$

puis
$$a^2b^2c^2 \cdot OBr_2^2 = (b^2 - c^2)(b^2 - a^2) + (c^2 - a^2)(c^2 - b^2) + (c^2 - a^2)(b^2 - a^2)$$

Le deux seconds membres sont identiques.

Les triangles OBr₁L et OBr₂L sont rectangles avec les angles droits en Br₁ et Br₁.

Le vecteur LBr₁ a pour composantes : $[0, (a^2 - c^2)/c^2a^2, (b^2 - c^2)/b^2c^2]$

On utilise le théorème suivant :

Theorem 4 (Evan's Favorite Forgotten Trick). Consider displacement vectors $\overrightarrow{MN} = (x_1, y_1, z_1)$ and $\overrightarrow{PQ} = (x_2, y_2, z_2)$. Then $MN \perp PQ$ if and only if

$$0 = a^{2}(z_{1}y_{2} + y_{1}z_{2}) + b^{2}(x_{1}z_{2} + z_{1}x_{2}) + c^{2}(y_{1}x_{2} + x_{1}y_{2})$$

LBr₁ est donc perpendiculaire à OBr₁ si st seulement si :

$$0 = (b^2 - c^2)(c^2 - b^2) + (a^2 - c^2)^2 + (b^2 - c^2)(b^2 - a^2) + (a^2 - c^2)(b^2 - a^2)$$

Le second membre s'écrit encore :

$$(a^2-c^2)^2-(b^2-c^2)^2+(b^2-a^2)(a^2+b^2-2c^2)=(a^2-b^2)(a^2+b^2-2c^2)+(b^2-a^2)(a^2+b^2-2c^2)=0$$

De la même manière LBr₂ est perpendiculaire à OBr₂.

*** Voir Barycentric coordinates for the impatient de Max Schindler et Evan Chen https://web.evanchen.cc/handouts/bary/bary-short.pdf